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Introduction
Today, a number of possible approaches are available for
the analysis of vibroacoustic problems. To find a re-
quired result with minimum effort and cost, the choice of
the right method is very important. Here, an overview
about one class of approaches shall be given. These
approaches may be characterised by the term ”energy-
based”. In contrast to the classical analysis of vibration,
that is based on quantities such as force and displace-
ment, these approaches are based on energy quantities
(energy, energy density, power, ...). It is in principle pos-
sible to achieve the same information using either one or
the other approach. But, depending on the application,
energy-based methods may have some advantages. Most
notably,

• the power - energy relation is not so sensitive to small
parameter changes,

• energy quantities can be averaged more easily,

• most often, the actual goal of a computation are
energy quantities (e.g. the sound pressure level that
is an energy quantity).

To illustrate the last two statements, consider the simple
problem (Table 1) that may be found in similar form in
most textbooks on acoustics. Of both possible solutions,
the second one is more elegant as only the information
wanted is produced.

Problem:
Compute the sound pressure level (SPL) in a cavity for
given excitation and absorption.
Solution 1:
• set up wave equation
• apply appropriate boundary conditions
• solve the equation using an analytical or a numer-

ical method
• result: sound pressure distribution
• average to reduce unnecessary information over-

head
• result: mean SPL Lp,m in cavity

Solution 2: (energy-based)
• calculate input power (if not already given)
• use: Lp,m = Lw − 10 lg A

A0
• note that result is an expected value

Table 1: An illustration of different approaches

Statistical energy analysis
Today the statistical energy analysis (SEA) is the most
famous energy-based method. Although similar ap-

proaches were used before in room acoustics, the actual
development of SEA started in the early 1960 with the
application to vibroacoustic problems in aerospace en-
gineering. ”Statistical” means, that the variables are
drawn from statistical population and all results are ex-
pected values. ”Energy” denotes that energy variables
are used and, according to Lyon[1], ”Analysis” means
here, that SEA is more a general approach rather than a
particular technique.

The main idea in SEA is that a structure is partitioned
into coupled ”subsystems” and the stored and exchanged
energies are analysed. The original theory is based on the
study of interaction of groups of modes. While this con-
cept is clever from a mathematical point of view, it is not
very practical to use it for a quick insight. Thus, in what
follows mathematical developments are dropped for the
benefit of those interested in an overview on SEA. The
reader interested in more in-depth treatment is referred
to a recent compilation[2] as starting point.

Some basics

Consider a single subsystem – a separated part of the
structure that is to be analysed. Any excitation acting
on the subsystem can be characterised by the resulting
power input Pi into the subsystem (Figure 1, left). If
power is injected, the subsystem stores vibrational energy
Wi. In practice, there will be also a power loss Pii (e.g.
due to dissipation). This power loss may be related to
the stored energy by the damping loss factor ηi by:

Pii = ωηiWi. (1)

Further, if the analysis is restricted to steady state, it is
clear that power input equals power loss: Pi = Pii.

Consider now a second subsystem (Figure 1, right). If
this subsystem were coupled to the first, the same power
balance would hold for both subsystems i and j, respec-
tively. As a result of the coupling the subsystems share
their vibrational energies. Power flows from subsystem i
to subsystem j. From the viewpoint of subsystem i, this
power flow Pij is a power loss. A power flow exists also
in the reverse direction (Pji) that is as a result a power
gain for subsystem j. To characterise these power flows,
a special quantity, the coupling loss factor ηij , is used in
SEA. It is defined similarly to the damping loss factor in
(1):

Pij = ωηijWi. (2)

In Figure 2, the case of four subsystems is shown as an
example. This time, there is only a power input to sub-
system 1. This power input is equal to the sum power
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Figure 1: left: A single subsystem; right: coupled subsys-
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Figure 2: Example of four coupled subsystems

losses (due to dissipation and coupling) for that subsys-
tem minus the power gains coming from the subsystems
2 and 3. The power balance reads then:

P1 =P11 + P12 + P13 − P21 − P31. (3)

Similar power balances may be established for the re-
maining subsystems:

0 =P22 + P21 + P23 + P24 − P12 − P32 − P42, (4)
0 =P33 + P31 + P32 + P34 − P13 − P23 − P43, (5)
0 =P44 + P42 + P43 − P24 − P34. (6)

As there is no power input into these subsystems, the left
hand side vanishes in the equations.

The power quantities in (3)-(6) may be substituted by the
damping and coupling loss factors and the vibrational
energy as in (1) and (2). The resulting equations may
then be written down together as a system of equations:

ω


η11 −η21 −η31 −η41

−η12 η22 −η32 −η42

−η13 −η23 η33 −η43

−η14 −η24 −η34 η44
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P1

0
0
0

 . (7)

In the example, subsystems 1 and 4 are not coupled and
consequently the corresponding coupling loss factors are

zero. The diagonal elements of the loss factor matrix in
(7) are called the total loss factors as they are the sum of
all coupling loss factors that are associated with power
losses for the respective subsystem:

ηii = ηi +
∑
j,j 6=i

ηij . (8)

The loss factor matrix in (7) can be rendered symmetric
by introducing the modal densities (number of modes or
resonances per frequency band) of the subsystems.

What is a subsystem?

So far, no detailed definition for a subsystem was given
here. A subsystem can be seen as a part or physical ele-
ment of the structure (”the system”) that is to be anal-
ysed. To be modelled as a subsystem that part or ele-
ment must be capable of vibrating quite independently
from other elements. The word ”quite” is emphasised
here because as long as the element is not separated from
the rest of the structure its vibration is not truly inde-
pendent. Next, it is required for a subsystem to vibrate
in resonant mode. That means, if the excitation is sud-
denly switched off, the vibrational energy stored in the
subsystem will decay rather then drop to zero immedi-
ately (a point mass for instance is no suitable candidate
for a subsystem). Thus, a reverberant sound field exists
within the subsystem. If different wave types exist in the
element, each of the corresponding sound fields is mod-
elled by one subsystem. It should be noted in passing
that the original definition for a subsystem makes the
mathematical treatment easier: a subsystem is a group
of ”similar” energy storage modes.

To illustrate this definition, some examples of vibro/-
acoustic elements that may be treated as subsystems
shall be given here together with the necessary input data
to characterise them:

• an acoustic cavity (a room): longitudinal waves –
only one subsystem needed, characterised by vol-
ume, fluid parameters, absorption

• a plate: bending, compression and shear waves mod-
elled by three subsystems, characterised by area,
thickness, material parameters, damping

• a beam: four wave types – four subsystems, char-
acterised by length, shape of cross-section, material
parameters, damping

• shells, non-isotropic plates, ...

It is worth to notice that the energy stored in the sub-
system is related to measurable quantities such as sound
pressure level. This fact enables the practical application
of the purely energy-based SEA equations.

The statistics in statistical energy analysis

Tough SEA is called statistical, no explicit statistics can
be seen in the above SEA equations. For the simple the-
oretical approach taken here, statistical operations con-
sist of a threefold average that is more implicit. First,
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Figure 3: Procedure of experimental SEA: power is injected
to each subsystem in turn

although not mentioned yet, calculation is done always
for a frequency band (octave, third-octave, ...), but only
at the centre frequency. This is an average of frequency.
Next, only one variable is used to characterise the energy
in one subsystem. This corresponds to a spatial average
of the subsystem. Finally, by using very few parame-
ters to characterise a subsystem there is no possibility
to restore all information from these parameters that is
necessary to describe the vibrational behaviour in detail.
For instance, only area, thickness, material parameters
are used as input parameters for a plate. Consequently,
as long as these parameters remain the same, the shape of
the plate does not matter in SEA. A circular, a quadratic
or a trapezoidal plate map all to the same SEA model.
This kind of average is called ensemble average. In modal
space, all three averages are included in the average over
a group of modes. It shall be noted in passing that be-
sides the estimation of mean or expected values from the
averages the estimation of variance is also possible, but
is not staightforward. Generally, the variance is accept-
able only at mid to high frequencies. That is why SEA
is often referred to as a high-frequency method.

Procedures of experimental and predictive
SEA

In order to apply SEA, an SEA model must be prepared.
The most important step in doing so is to break up the
structure, which should be analysed, into subsystems.
This is often difficult to perform because the underly-
ing theoretical assumptions have to be met as good as
possible and at the same time a number of practical con-
siderations must be taken into account. Moreover, for
a given structure there are several models possible nor-
mally, so the modelling is ambiguous. After deciding for
a model, the frequency range and band widths of interest
must be identified. The mentioned steps are common to
the two modes of SEA which should be detailed in the
following.

In experimental SEA the main idea is to determine all
quantities in (7) by experiment. To this end the follow-
ing procedure is implemented: Power is injected to each
subsystem in the structure in turn. This may be done
for instance by means of a hammer, a shaker or a loud-
speaker. Then, each time the energy in each subsystem

is measured (by accelerometers or microphones). As de-
picted in Figure 3, for each subsystem a set of energies in
now available and the following equation can be set up
using (7):P1 0 0

0 P2 0
0 0 P3

 =

ω

 η11 −η21 −η31

−η12 η22 −η32

−η13 −η23 η33

 W1 W1 W1

W2 W2 W2

W3 W3 W3

 . (9)

The colours here correspond to those in Figure 3. By in-
verting the matrix of energies, this system may be solved
to get the coupling and damping loss factors. In practice
the matrix of energies is often bad conditioned but a num-
ber of methods have been developed to cope with that.
Knowing now the matrix of loss factors, main paths of
power may be identified, the effect of modifications may
be assessed and a sensitivity analysis may be performed
to find those factors that are most important for a given
transmission scenario.

The basic idea in predictive SEA is to assess the coupling
loss factors theoretically. Thus, it is possible to predict
the behaviour of a structure even in an early stage of
its design when no object is available for measurements.
The procedure is as follows: First, the damping loss fac-
tors are estimated either from measurement, from tables,
from calculations or simply from ”experience”. Then,
the input power has to be determined (by experiment
or calculation). Alternatively, the input power is set to
unity, if only transmission loss is of interest and not ab-
solute response values. The coupling loss factors may
be calculated or assessed by several different techniques
depending on the specific case of the coupling:

• from radiation or transmission efficiencies (wave ap-
proach)

• using modal approaches

• using numerical methods (e.g. Finite Element
Method)

• coupling power proportionality ηij = ηjinj/ni

(ni, nj are the modal densities of subsystems i and j)

• ...

With all necessary input parameters available, the SEA
equations may be solved and the response of the structure
may be predicted. As in experimental SEA this enables
a number of useful possibilities for analysis.

In some cases, it is useful to mix experimental and pre-
dictive SEA. However, great care must be taken as due
to the ambiguous modelling this will not always lead to
the expected results.

Applications of SEA

SEA is applicable for a great number of different prob-
lems. In many cases it is the only alternative left that is
able to deal with high-frequency vibro-acoustic problems.
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Figure 4: left:Two rooms with side walls (light concrete,
15 cm), floor and ceiling (heavy concrete, 19 cm) separated by
a partition wall (light concrete, 10 cm), right: SPL difference
between the two rooms: non-resonant transmission only (red),
non-resonant and resonant (green), +flanking transmission
(blue)

Its use as a tool for quantifying (dominant) transmission
paths is also very efficient. To name a few areas of ap-
plication for SEA, the following should be mentioned:
building acoustics (handle flanking transmission !), ve-
hicle interior noise (also for railway and ships), sound
package modelling (efficient treatment of multi-path air-
borne sound transmission and absorption), (turbulence
boundary layer induced) vibration of aircraft and launch
vehicles.

To further illustrate the use of SEA, some examples shall
be given here. The first example[3] is concerned with
flanking transmission in building acoustics. In Figure 4,
a sketch of a double room arrangement with a partition
between the rooms is shown. This maps to an SEA model
with 35 subsystems, two for the two rooms and three
for the partition and for each of the walls, ceilings and
floors. Three different stages of the model can be used
for calculation:

• two subsystems (both rooms), only non-resonant
transmission (mass law) is considered

• three subsystems (both rooms and the bending
waves in the partition), non-resonant and resonant
transmission

• all 35 subsystems, non-resonant, resonant and flank-
ing transmission

The typical dip around the critical frequency of the par-
tition (400 Hz) is clearly notable in the second case, see
Figure 4. In the last case the influence of the differ-
ent critical frequency of the flanking wall manifests it-
self through the additional dip around that frequency
(250 Hz).

Another example is the prediction of structure-borne
sound transmission in an untrimmed car body shell. This
time the model consists of 280 subsystems. In Figure
5 the beam and the plate subsystems are shown. The

model is used to predict the effect that modifications of
the body have to the transmission of sound from an exci-
tation at the engine mounts into the passenger compart-
ment. The modifications used are intended primarily to
show the abilities of the method and consist of adding dis-
tributed mass to firewall, floor and roof in turn. Thus,
it is possible to measure the change of transmission be-
haviour easily. In Figure 6, both measured and predicted
results are shown. While the prediction is good for the
case of the firewall and the roof, it seems to fail for the
floor. This may be due to insufficient modelling of the
space beneath the car. Typical for SEA, it is not easy to
shed light on this because there are a number of possible
reasons.

The last example is intended to demonstrate one of the
real powers of SEA: to get an estimate very quickly. Con-
sider the following problem: The wall thickness of the
outer housing of a pump is to be changed from 4 mm
steel to 1.5 mm steel. Assess the impact on the radiated
sound (only structure-borne excitation needs to be taken
into account). Figure 7, left shows the simple SEA model
which can be set up and solved within minutes. The re-
sult (Figure 7), right shows that although the vibration
level increases, due to shift of the critical frequency the
radiated sound is less in a broad frequency range.

Advanced energy based methods
The main motivation for advanced methods is that be-
sides its many advantages SEA has a number of problems
and limitations. Without going to much into detail, a
few of them should be named here. First, SEA theory
requires a number of implicit assumptions to be valid,
that are often not easy to meet in practice: weak cou-
pling (this refers to the problem explained in the section
on subsystems), damping should be not too low but also
not too high, homogeneity of the subsystems is neces-
sary to render the calculation of vibrational level from
the energy valid, sound fields have to be reverberant and
diffuse, etc. Next, as may be guessed from the car body
example, SEA often requires high modelling expertise.
Moreover, SEA delivers no information on local distribu-

Figure 5: Graphical representation of an SEA model of a
car body shell: plate (top) and beam (bottom) subsystems



Figure 6: Predicted and measured result of modifications
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Figure 7: SEA model for the pump housing (left), result
(right): vibration level (red) and sound pressure level (green)
changes

tion vibration level within the subsystems (this becomes
a problem, if the variance in the spatial distribution is
to high). To close this list, the modelling approach is
incompatible to classical FEM / BEM which makes the
practical application of SEA in some cases too costly.

A great number of methods that circumvent some of
these limitations and problems have been developed, but
up to now only on an academic level. The following list
gives an (incomplete) overview together with the main
idea behind each method:

• Wave Intensity Analysis (WIA)[4]: like SEA, but
fourier decomposition of wave field intensity in a
subsystem - relaxes the diffuse field assumption of
SEA

• Energy Finite Element Method (EFEM)[5]: analogy
with heat conduction, see below

• (Integral) Smooth Energy Model (SEM)[6] or High
Frequency Boundary Element Method (HFBEM):
boundary integral formulation using energy vari-
ables, see below

• Energetic Mean Mobility Approach (EMMA)[7]:
suited for treatment of heterogenous structures, es-
pecially for experimental application

• Complex Envelope Distribution Analysis
(CEDA)[8]: analysis using a cepstrum calcu-
lated from wavenumber spectrum rather than from
frequency spectrum (not energy-based)

• Hybrid Methods: incorporate explicit ”modal” be-
haviour of components into SEA-like models, e.g.[9]

Both the energy finite element method and the high fre-
quency boundary element method shall be explained here
in little more detail. They both start with the same fun-
damental assumption that the principle of energy conser-
vation may be used to formulate an equation of energy
continuity. In contrast to SEA not a subsystem but an
infinitesimal volume is considered. The amount of vi-
brational energy stored in that volume will be governed
by a) power losses Pdiss (due to dissipation), b) power
injection Pin (due to external load) and c) energy trans-
port cgW through the volume boundaries (energy flow
per unit area). Thus, an equation for the time-derivative
of the energy may be set up:

∂

∂t
W = −∇ · (cgW ) + Pin − Pdiss, (10)

which can be seen as an energy continuity equation. Re-
formulated using power density and energy density, as-
sume steady state and substitute dissipated power with
the damping loss factor the equation reads:

pin = ∇ · I + ωηw. (11)

This equation may used as a basis for calculating the
spatial distribution of energy density w from the known
input power density pin. Two different approaches exist
to provide the necessary relation between intensity I and
energy density needed to transform (11) into a solvable
equation.

The first approach assumes that the wave field consists
of superposed plane waves only:

I = −
c2
g

ωη
∇w. (12)

If substituted into (11), the resulting equation is analog
to the equation for heat conduction in a plate including
convection:

pin = −
c2
g

ωη
∆w + ωηw, (13)

Pin = −λ∆T + α (T − TB) . (14)

Thus, a vibration conduction coefficient c2
g

ωη as well as a
vibration convection coefficient ωη may be defined. (13)
may be solved using finite element (FE) techniques (thus
the name EFEM). In particular, using the both coeffi-
cients as input parameters, existing FE codes for heat
conduction may be used for the calculation. While this
is an advantage, the method possesses a serious prob-
lem: because the assumption of plane does not hold for
wave fields dominated by spherical waves, it is not valid
in these cases. However, it is not fully clear how relevant
this is for practical application.
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Figure 9: SEA, EFEM and HFBEM results for the plate

The second approach, that results in the HFBEM, as-
sumes that the wave field may be synthesised by spherical
waves from sources together with spherical waves with
origins at the boundary of the wave field. As a conse-
quence, the energy density at some location M is given
by integration over all (primary) sources S and over all
boundary sources Q:

w(M) =
∫

Ω

ρ(S)G(S, M)dS

+
∫

∂Ω

σ(Q)f(uMQ,−→n Q)G(Q, M)dQ. (15)

Without going into much detail, it shall be pointed out
that from this, an integral equation for the unknown
source strengths σ of the sources at the boundary may
be formulated:

σ(Q) =
%γn

γ

(∫
Ω

ρ(S)H(S, Q)dS

+
∫

∂Ω

σ(Q′)f(uQQ′ ,−→n Q′)H(Q′, Q)dQ′
)
· −→n Q. (16)

This equation can be solved by a boundary element ap-
proach using a collocation technique. That means, the
continuous function σ is approximated by a stepwise con-
stant function and the second integral in (16) becomes a
sum. Thus, the equation can be transferred into a linear
system of equations. Once this system is solved for the
source strengths, the spatial energy density distribution
can be calculated using the discretised form of (15).

A last example[10] shall demonstrate the capabilities of
both EFEM and HFBEM. A large steel plate (Figure 8)
with a single point source (e.g. a shaker) is considered.
The results from SEA, EFEM and HFBEM are shown in
Figure 9 for different frequencies and damping. They are
plotted along the path shown in Figure 8. While the SEA
provides no information about the spatial distribution of
the energy density, the other methods show a somewhat
higher energy level in the vicinity of the source (≈5 m).
For higher damping, EFEM fails to predict the direct
field correctly. The HFBEM results are less reliable for
energy equipartition in the low damping case.

Summary
In this paper, a short overview was given on the basic
ideas behind methods for the treatment of vibroacoustic
problems that are based on energy variables. In particu-
lar, theory and application of the most popular of these
methods, the statistical energy analysis (SEA), were ex-
plained. Main advantages were shown as well as the prob-
lems and limitations. As example for methods that go
beyond the limits of SEA, a brief introduction into en-
ergy finite element method (EFEM) and high frequency
boundary element method (HFBEM) was given.
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