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Introduction 
The Finite Element Method (FEM) is an indispensable tool 
in today’s simulation tasks. It is at the core of any concept 
that attempts to reduce time-to-market and/or enforces vir-
tual prototyping in almost every engineering field. However, 
when simulating time harmonic acoustics using the FEM, an 
efficient tool for bridging the “mid-frequency gap” is still 
missing. The lower frequency range is well covered through 
element-based methods, like domain- or boundary-integral 
based formulations. The higher frequency range, in turn, 
benefits from the development of energy averaging methods. 
However in between, the mode density is too low to render 
the high-frequency methods effectively, and the FEM suffers 
with increasing wave number from the so-called pollution 
effect [1]. 

Several approaches exist that attempt to extend the element-
based methods to the mid-frequency range. These generally 
rely on knowledge-based concepts, i.e. incorporating a-
priori-knowledge of the solution into the numerical method 
itself. However, these concepts appear to still lack sufficient 
maturity for reliable and stable simulations. In this contribu-
tion, a more straightforward approach to tackle the pollution 
effect is suggested, namely through still relying on the con-
ventional FEM, but taking higher order polynomial shape 
approximations into account. 

Pollution and Dispersion 
The pollution effect is closely related to the dispersion, 
namely the difference of the wavelength for the numerical 
FEM solution and the exact wavelength at high wave num-
bers. For acoustic simulations at high frequencies using 
conventional linear or quadratic elements, this effect usually 
leads to uneconomical mesh sizes.  

In recent years, various different approaches to control and 
reduce the dispersion have been developed. Although pollu-
tion may be completely avoided only in one dimension [2], 
these methods at times render effective also when applied to 
higher dimensional numerical experiments. However, most 
of these stabilized approaches seem to be rather complicated 
for simulations on general non-uniform meshes. 

Shape approximation 
In order to control pollution and numerical dispersion the 
use of higher order shape function in the conventional finite 
element formulation is suggested. Three different finite ele-
ment families with different polynomial shape approxima-
tions are presented: Integrated Legendre polynomials [3], 
Bernstein polynomials, and a family of spectral element 

shape functions, given by Lagrange polynomials through the 
Gauss-Lobatto or Fekete points on quadrilateral and triangu-
lar elements, respectively [4]. 

The choice of appropriate shape functions strongly affects 
the conditioning of the overall system matrix. Regarding the 
simulation of large scale acoustic problems including Krylov 
solvers, this significantly affects the performance of the 
solution process. However, the rather complex geometries of 
most practically relevant cavities usually require a certain 
degree of geometric accuracy. Therefore the polynomial 
order p is kept at moderate levels. 

Numerical Examples 
The shape functions mentioned above are currently inte-
grated in the high performance FE library libMesh [5]. The 
numerical examples shown here are performed considering a 
rectangular domain with essential and natural boundary 
conditions on two sides of the boundary, prescribing the 
sound pressure and the normal velocity vn respectively. The 
remaining boundary is prescribed with vn = 0. For this sim-
ple problem an analytical solution may be derived, which is 
used in order to monitor the accuracy of the computations. 
The mesh consists of either 8-noded quadrilateral QUAD8 or 
6-noded triangular elements TRI6, where the location of 
interior nodes (not lying on the boundary) is randomly modi-
fied in order to obtain an irregular mesh. An example mesh 
with triangular elements is shown in Figure 1. For all com-
putations the fluid properties for air (density ρ = 1.225 kg/m3 
and wave speed c = 340 m/s) are used. 

Figure 1: Model problem meshed with randomly distorted 
triangular elements. 

In a first step, the performance of the various finite element 
families in combination with iterative solvers is tested. Fig-
ure 2 shows the number of iterations against the frequency 
for the three finite element families with polynomial order 3 
and 5. For the simulations of Figure 2, a transpose-free 
quasi-minimal residual (TFQMR) Krylov solver is used, 
preconditioned with an incomplete factorization. Conver-
gence is said to be achieved when the residual is ||r|| < 10-10. 
The number of triangular elements is chosen such that in all 
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simulations the total number of degrees of freedom remains 
the same. 

Figure 2: Iteration counts vs. frequency for different ele-
ment families and different polynomial orders. 

 
For the problem investigated here, the best performance is 
achieved with the finite elements based on Bernstein poly-
nomial shape approximations. From the results in Figure 2 it 
may also be seen, that the performance of the iterative 
solvers and the stability of the solution process decreases 
with increasing polynomial order and increasing frequency. 

The results shown in Figure 3 depict the efficiency of the p-
FEM concept suggested, where the error of the finite ele-
ment solution is plotted versus the total number of degrees of 
freedom. 

Figure 3: Scaled L2 error vs. number of degrees of freedom 
at 1500 Hz. 

To determine and compare the accuracy of different finite 
element families, a scaled error based on the L2 error norm is 
adopted. The numerical results are obtained from simula-
tions on a regular quadrilateral mesh and a distorted 
triangular discretization (representing the best and worst 
case scenario). Finite elements based on fourth order spectral 
(Lagrange polynomials through Gauss-Lobatto or Fekte 
points) and Bernstein polynomials are compared with 
conventional second order Lagrangian elements. 

The results in Figure 3 clearly show that higher order shape 
functions increase the efficiency of the finite elements sig-
nificantly. At this, spectral element shapes on the regular 
quadrilateral mesh yield the most efficient formulation. 
However, for practical applications, which may involve 
highly irregular meshes containing triangular as well as 
quadrilateral elements, the p-FEM concept based on Bern-
stein shapes considered here, provides remarkably high ac-
curacy. This is true for arbitrary numbers of degrees of free-
dom, irrespective of the element type used. 

Conclusions 
Using iterative solution algorithms the Bernstein shape func-
tions in the p-FEM formulation provided the most stable and 
efficient solution. However, applying Krylov solvers, high 
polynomial shape approximations decrease the stability of 
the solution algorithm. Hence, a reduction of the total num-
ber of degrees of freedom, stemming from high approxima-
tion orders may be nullified when iterative solution algo-
rithms are used that may decrease in terms of computational 
efficiency with increasing order p. 

The p-FEM concept suggested here provides an efficient 
method for simulating acoustics at higher frequencies, where 
the model sizes and respective number of degrees of free-
dom eliminates the use of the conventional linear FEM. 
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