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Introduction : 
Modes are elementary solutions of the wave equation satis-
fying conditions of symmetry and boundary conditions at the 
duct walls. These conditions lead to the characteristic equa-
tion having the mode wave numbers as solutions. The sound 
field evaluation in inhomogeneous ducts or for non-homoge-
neous sources requires sets of mode solutions which must be  
• precise  (nulling the char. equation), • complete  (no impor-
tant mode missing), • unambiguous  (no mode appears repea-
tedly in the set). The last requirement is the most important; 
it implies, in conventional methods of numerical solution of 
the char. equation, the knowledge of precise starters, and 
mode range limits.  

The proposed method is described below for a flat duct with 
locally reacting lining without flow, although it works also 
in round ducts, with bulk reacting linings, and with steady 
flow  (see forthcoming paper in acta acustica).  

The method is easily programmed, it computes fast and pre-
cisely up to reasonably high mode orders, and is mode-safe. 
It does not require start solutions, nor mode range limits.  

Fundamentals : 

y

x
z

2hz

2hy
Gz

Gy

 

G= lining surface admittance; time factor  e jω t  

General mode form: 

p(x, y, z) = qy (εyy)³qz(ezz) ³e - Gx  

Mode symmetry  (similar in z-direction) : 

qy (εy y) =
cos(eyy)   ;   symmetrical mode

sin (eyy)  ;   anti - symmetrical mode
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Secular equation (from wave equation): 

Γ2 =ey
2 +ez

2 - k0
2   ;   k0 =w / c0  

Characteristic equation  (similar in z-direction) : 
εy hy ³ tan(eyhy ) = j k0hy ³Z0Gy =: j Uy ; symmetrical

ey hy ³cot (eyhy ) = - j k0hy ³Z0Gy =:- j Uy ;anti - symm.
 

Generalized form, with   

z ≡ ε h   searched, and  U ≡ k0 h ⋅Z0G   given quantities : 

f g(z) ; U( )= z ⋅ tan(z) - j U =! 0 ; symmetrical mode

f g(z) ; U( )= z ³cot (z) + j U =! 0 ; anti - symmetrical mode
 

Thus :   
gsy(z) = z ⋅ tan(z)

gas(z) =z ³cot (z) = z2 (z ³tan (z)) = z2 gsy(z)
 

3D-mode chart for symmetrical modes (with curves Re(z)= 
const, and  Im(z)=const over the complex U-plane):  

0

2

4

6

8

Re(U)

-5

-2.5

0

2.5

5

Im(U)

0

2

4

6

Re(z)

n

 
A method of mode set evaluation must unambiguously sub-
divide this Riemann surface into single-mode leaves. The 
branch cuts must start in the branch points; the “ramp” of the 
surface wave mode will be distributed into the other modes.  

Continued-fraction expansion : 
The transcendental and quasi-periodic functions  g(z)  of the 
char.equation can be expanded as continued-fractions  (cf), 
which vonverge in the whole z plane  (except in poles).  

g(z) = z ⋅ tan z =
z2
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Numerical convergence begins at a depth  k  of expansion 
when the sub-fractions are much smaller than the leading 
integers of the denominators: 

| z |2

(2k +1)
<< (2k - 1) ¼ (2k)2 - 1 >>| z |2  

The transcendental characteristic equation  

f g(z) ; U( )= z2
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- jU =! 0  
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can be transformed by a truncated continued-fraction, after 
collecting the truncated cf in a single fraction, cf (z2 ) =  
Num (z2 ) Den (z2 ) , into a polynomial equation of  z2   

p z2;U; k( ):= Num(z2 ) - jU ³Den (z2 ) =! 0  

Solving polynomial equations is a standard task of numerical 
mathematics; fast and precisely computing programs exist, 
not needing start solutions. If the depth  k  of the cf-expan-
sion is sufficiently large, and the polynomial solutions are 
ordered in a list with increasing real parts, the usable mode 
solutions  z  up to a mode order limit  mhi  will be found at 
the beginning of that list {z0 , z1 , z2 ,…, zmhi ,…} . For a 
rectangular duct with locally reacting lining, the relation 
between  k  and  mhi≤15 is  k= max(4·mhi+1 , 45).  

2.5 5 7.5 10 12.5 15 17.5
Re

2

4

6

8

Im

U & ehHm L

0

m=0

m=1 m=2 m=3
m=4

m=5

U(k0h)

 

Frequency response curves of the absorber function U(k0h) 
of high-Q resonators and of solutions  εh(m)  for symmetri-
cal modes with orders  m= 0,1,…,5  in a rectangular duct. 
(the flat, dashed curve connects the branch points). 

The surface wave mode is distributed over the other modes. 

More complicated ducts : 
 

 

A rectangular duct 
with different 
linings on opposite 
sides. 
 

 

Absorber functions: 

Ui = k0h ⋅ Z0Gi ; i =1,2

Usy := 1

2
U1 +U2( )   ;   Uas := 1

2
U1 - U2( ) 

Mode form : 

p(x, y) = A ⋅ cos (ey) +B ³sin (ey)( )³e- Gx

(Gh)2 = (eh)2 - (k0h)2

B
A

= - cot(eh)
eh³ tan(eh) - j k0h ³Z0G2
eh³tan (eh) + j k0h ³Z0G2

 

The characteristic equation (with  z ≡ εh  )  reads: 

z ⋅ tan z − j Usy[ ]³ z ³cot z + jUsy[ ]=Uas
2  

or equivalently  f gsy(z) ; Usy( )⋅ f gas(z) ; Usy( )= Uas
2  

Obviously it can be transformed with continued fractions to 
a polynomial equation in  z2  .  
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Frequency response curves of the absorber functions 
Ui(k0h) of resonators with different tuning and quality on 
opposite duct sides in a rectangular duct, and of solutions  
εh(m)  with orders  m= 0,1,…,5 . 

Mode-safe evaluation of this mode set by conventional me-
thods would be difficult.  

Numerical tests : 
The presented method was tested in several aspects (see pa-
per in acta acustica). Of great interest is the relation between 
the depth  k  of cf-expansion and the range of mode orders m 
obtained. The last graph shows that relation for a bulk reac-
ting lining of a porous layer (thickness d ; norm. flow resist-
ance Ra) which is covered with a resistive foil (norm.parti-
tion impedance Zs). The decadic logarithm of the magnitude 
of the char.equation with polynomial solutions inserted is 
plotted over the mode order  m  and the expansion depth k. 

 
An expansion depth  k≥40  should be applied.  
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