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Introduction
A study of the attenuation of an acoustical wave in a
rigid duct with shear flow is presented. The flow is con-
sidered as quasi-laminar. Two methods for solving these
equations are presented: First, a perturbation expansion
of the visco-thermal propagation equations is given. A
second method,using the Chebyshev polynomials is also
presented and compared to the perturbation expansion.

List of symbol
• u0(y) + ũ = c0(M + u),ṽ = c0v are the axial and

transverse velocities

• p0 + p̃ = p0(1 + p) is the pressure

• ρ0 + ρ̃ = ρ0(1 + ρ) is the density

• T0 + T̃ = T0(1 + τ) is the temperature

• u, v, p, τ , ρ; dimensionless acoustic variables

Basic equations
The linear equations governing the propagation of waves
in a mean shear flow, when the diffusion coefficients are
assumed to be constants, are:
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ṽ) = − ∂p̃

∂x
+µ0∆ũ+(λ0+
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+µ0∆ṽ +(λ0 +

µ0

3
)

∂

∂y
(
∂ũ
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p = Rρ0T̃ + RT0ρ̃

Perturbation expansion
The dimensionless equations are developed in terms of
Ω = ωH/c0 and M (the mean Mach number) and the
dimensionless wavenumber is sought under the form:

K = K00+ΩK10+MK01+ΩMK11+Ω2K20+M2K02+· · ·

First order K00

At the first order, we obtain:
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where s = δac/H , δac is the thickness of the acoustical
boundary layer and σ is the Prandtl number. This set of
equations can be formally written:
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The solution of this problem gives the Zwikker and
Kosten solution with k2

h = −iσ2s2 and k2
v = −is2:
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and the wavenumber is given by
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The adjoint solution is given by:
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Second order K10 (term in Ω)

The set of equations giving K10 can be written:
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By use of the Fredholm theorem, this set of equations
has a solution only if
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so that
K10 = 0

Second order K01 (term in M)

The set of equations giving K01 can be written:
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where m is the transverse dependence of the mean veloc-
ity (u0(y) = Mm(y)).

By use of the Fredholm theorem, this set of equations
has a solution only if
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The value of K00 and K01 as a function of s is given in
Figures 1 and 2 for two values of the mean flow profile
m = (2nM + 1)(1 − y2nM )/(2nM ).
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Figure 1: Real part of K00 and K01 as a function of s.
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Figure 2: Imaginary part of K00 and K01 as a function of s.

Use of Chebyshev polynomials
The equations (1) can be rearranged to eliminate the
variables p and ρ. The remaining variables u, v, τ have to
vanish at the wall. The vector U represents the value of
u at the N Chebyshev points taken along the transverse
direction. The equations (1) can be put under the form
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The modes can be found by computing the eigenvalues of
the 9N × 9N matrix M. The values find by this method
for the quasi-plane wave are compared to the value find
by the perturbation expansion in Figure 3.
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Figure 3: Imaginary part of the wavenumber k as a function
of the frequency f for a channel of height 15 mm at 20 ◦C (15
< s < 265 and 0.0014 < Ω < 0.41).


