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Introduction
An interesting technique to reduce vibrational energy is
Active Constrained Layer (ACL). In the typical ACL
configuration, a viscoelastic layer is sandwiched between
the structure and a piezoelectric actuator, across which
a control voltage is applied.
This paper describes a simple model of beams treated
with ACL, which provides insight into the physics of ACL
treatments. The equivalent spring stiffness of a free ACL
patch subjected to a constant strain at its base is derived.
Using a modal approach, this spring is coupled to a mass-
spring system modelling the modes of the base beam.
Since the strain beneath the ACL patch is assumed to
be constant, the model is valid for patches whose length
is short compared to the wavelength of the beam, and
which are positioned around the antinodes of the beam.
The model can be used to study the damping mechanisms
of ACL treatments.

Equivalent stiffness of a free ACL
patch
The details of the derivation can be found in [1]. An ACL
patch of length La is subjected to an extensional strain εb

of constant amplitude at its base. The equivalent stiffness
κacl of the free ACL patch (i.e. not bonded to the host
structure) is defined as

κacl =
Fshear

ep − eb
, (1)

where eb = Laεb is the longitudinal extension of the base
of the ACL patch, and ep = Lad31V/tc, where d31 is the
strain constant of the piezoelectric actuator and V is the
voltage induced across its electrodes. Fshear is the shear
force applied to the right half of the upper surface of the
viscoelastic layer, i.e.

Fshear = b

∫ La/2

0

τ(y)dy, (2)

where b is the width of the beam, τ is the shear stress in
the viscoelastic layer, and y is a position variable equal
to zero at the center of the ACL patch. Equilibrium of
forces in the longitudinal direction yield

τ(y) =
1
b
f(y)

2
La

κacl(ep − eb), (3)

where f(y) =
ζ sinh

√
gy

cosh(ζ) − 1
(4)

and g =
G

tv

1
tcEc

. (5)

In these equations, Ec and tc are the Young’s modulus
and the thickness of the cover layer, G and tv are the
shear modulus and the thickness of the viscoelastic layer,
and ζ =

√
gLa/2. The function f(y) describes the shape

of the shear stress τ along the ACL patch, and depends
on the non dimensional parameter ζ which contains the
characteristics of the ACL patch.
Equations 1, 2 and 3 yield

κacl = b
Ectc
La

cosh(ζ) − 1
cosh(ζ)

. (6)

The lumped parameter model
A beam of length L is treated with an ACL patch po-
sitioned between positions x = x1 and x = x2, with its
center at x = xc, as shown in Figure 1. A transversal
force Fext is applied at x = xe, and a voltage V is ap-
plied to the piezoelectric cover layer. Since the mass and
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Figure 1: Principle of the lumped parameter model. Left:
the beam treated with an ACL patch; right: lumped param-
eter modelof a mode of the beam.

the bending stiffness of the ACL patch are neglected, the
only effect of the patch is to apply a shear stress τ to the
base beam. The equation of motion of the beam is

B
d4W

dx4
− ρω2W = b

tb
2

dτ

dx
+ Fextδ(x − xe), (7)

where B, tc and ρ are the bending stiffness, the thick-
ness and the mass per unit length of the base beam, re-
spectively, W is the transversal deflection, and ω is the
angular velocity. If the strain is constant underneath the
ACL patch, then the shear stress on the beam is equal
to

τ(x) =
1
b

2
La

f(x)κacl(ep − eb)Π(x), (8)

where Π(x) = 1 if x ∈ [x1, x2] , 0 otherwise. (9)



Following the classical modal decomposition approach,
we assume the transversal deflection W (x, ω) is given by

W (x, ω) =
∑

n

Wn(ω)Φn(x), (10)

where Wn(ω) and Φn(x) are the modal amplitude and
the mode shape of the nth mode of the untreated beam,
respectively. Inserting 10 and 8 into 7, and neglecting
mode coupling effects, yield

Wn(Kn − Mnω2) = Kacl(ep − anWn) + Fn. (11)

In this equation, Kn, Mn and Fn are the modal stiffness,
the modal mass and the modal force of the nth mode,
respectively, and

an = − tb
2

(Ψn(x2) − Ψn(x1)) , (12)

where Ψn(x) = dΦn(x)/d(x). Kacl is the equivalent stiff-
ness of the coupled ACL patch and is given by

Kacl =
tb
La

Γnκacl, (13)

where κacl is the equivalent stiffness of the free ACL
patch given in 6, and Γn is a non dimensional coupling
term equal to

Γm =
∫ L

0

Φm(x)
d
dx

(
f(x)Π(x)

)
dx. (14)

Equation 11 is the lumped parameter model of the beam
treated with ACL, as shown in Figure 1. The left hand
side of equation 11 describes a mass-spring system and
corresponds to the nth mode of the host beam. The right
hand side of the equation describes a spring of modal
stiffness Kacl and corresponds to the coupled ACL patch.
This spring responds to the extension ep induced in the
actuator by the control voltage, and to the extension
anWn of the host beam beneath the ACL patch. The non
dimensional term an corresponds to the coupling between
the bending motion and the extensional motion beneath
the ACL patch.

ACL damping discussion
In this section, the phenomena associated with ACL
damping are discussed and described in terms of the pa-
rameters of the lumped parameter model. For the sake of
clarity, the subscript n is omitted henceforth. Equation
11 is then rewritten as

W (K − Mω2) = Kacl(ep − aW ) + F. (15)

In the passive configuration (V = 0), the extension ep in-
duced in the actuator by the control voltage is zero and
hence the effect of the ACL patch is to add to the base
beam a stiffness equal to aKACL. With the assumption
that the real part of this stiffness is negligible in com-
parison with the stiffness K of the base beam, the ACL
patch in effect adds a loss factor ηp equal to

ηp = a
�{Kacl}
�{K} . (16)

As expected, the loss factor depends on the coupling a
between bending and extension beneath the ACL patch
and on the imaginary part of the stiffness of the patch
coupled to the beam.

In the case of an active treatment, the material damping
increases if ep, and thus the control voltage, is in phase
with −W . In this case the extension applied to the spring
Kacl, and thus the dissipation of energy in this spring, is
augmented. If ep is equal to −αW , where α is a positive,
real constant, then

W =
F

K − Mω2 + Kacl (α + a)
. (17)

The total loss factor η is therefore given by η = ηp + ηa,
where ηa is the loss factor due to the augmented material
damping, and is given by

ηa =
α

a
ηp. (18)

In theory, ηa is infinite for infinite values of α, but in
practice the amplitude of the control voltage is limited.

Another way of controlling the vibrations is to apply ac-
tive forces to the host structure through the viscoelastic
layer, as can be seen by rewriting equation 15 as

W (K − Mω2 + Kacl) = F + Fa, (19)

where Fa is the active force and is equal to

Fa = Kaclep. (20)

If F + Fa = 0, then the total input power into the struc-
ture is zero and so is the response. In practice, complete
cancellation cannot be achieved. The control voltage op-
timising the active forces effect is finite, and decreases as
Kacl increases. This result suggests that Kacl should be
chosen as high as possible, i.e. the actuator should be
bonded directly to the beam; however, this choice would
result in a low amount of material damping in the struc-
ture, and the beneficial effects of material damping on the
stability of the control as well as on the fail-safe charac-
teristics of the treatment would be lost; there is therefore
a compromise.
Equation 19 shows that the optimal control voltage is
in phase with −F . In cases where feedforward control
is possible, this phase relationship might be easy to im-
plement, and will usually strongly depend on frequency.
In other cases, since at resonance the force is in phase
with the velocity of the beam, the active control is essen-
tially a derivative feedforward control.This type of con-
trol becomes less efficient away from the resonance, but of
course control is of less importance there. An additional
beneficial effect of having material damping in the struc-
ture is therefore to increase the efficiency of the effect of
the active actions in the case of feedback control.
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