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Introduction 
Nowadays, the expression of the temperature difference 
across the stack of a thermoacoustic refrigerator can easily 
be obtained in steady state, but models for analyzing the 
transient process are still in progress [1]. More precisely, 
previous models used to describe the behavior of 
thermoacoustic devices usually assume several 
approximations preventing us from describing the transient 
behavior of the temperature field. Particularly, heating due to 
viscous effects at the interfaces between the walls and the 
fluid in the thermoacoustic stack and thermal losses are 
usually neglected. Therefore, the parameters which govern 
the transient response, its shape and its characteristic 
stabilization time are not fully identified. 
Thus, the aim of the present work is to investigate more 
deeply, analytically, the transient behavior of the 
thermoacoustic refrigerator, using a revisited description for 
the temperature variations in the stack and in the resonator 
due to thermoacoustic processes, by introducing new 
features as heat losses through the thermoacoustic system 
and viscous heating in the boundary layers near the walls.  
 

Model 
 

In the model, the resonator of the thermoacoustic refrigerator 
is split in three regions (as shown in Fig. 1), that are the 
region between the loudspeaker and the stack of plates 
(region 1), the stack (region 2) and the region between the 
stack and the end of the resonator (region 3). The conduction 
of heat equation is written for each region, as follows : 
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where the transfer of thermal energy from the 
thermoacoustic device to the surroundings through the 
resonator walls is taken into account by the empirical 
coefficient ηi. The coefficient qth represents the heat flux per 
unit surface due to thermoacoustic process, 
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with coefficients ath and bth functions of particle velocity 
and acoustic pressure. The coefficient Qv is the  heat power 
per unit volume due to viscous effects at the interfaces 
between the walls and the fluid in the stack region, 
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with Tp the acoustic period, µ the viscosity coefficient, vx 
the x-component of the particle velocity and <•> standing 
for the spatial average over a cross section of the stack. 
 
 
 
 
 
 
 
 
 
 

Figure 1: Thermoacoustic refrigerator 
 
A set of differential equations, derived from the given 
physical situation, corresponding to initial and boundary 
conditions is also written 
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where the factor qth (Eq. 7 and 8) takes into account the 
thermoacoustic heat transfer from the fluid to the plates at 
both ends of the stack. 
 
A solution can easily be written in the Laplace domain, but 
an analytical expression of the inverse transform of this 
solution can not be obtained without making some 
approximations. First, the stack is considered as a short one 
(that is its length is considered very small having regard to 
wavelength) and, second, the heat transfers from the region 
of the stack to the regions (1) and (3) are not taken into 
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account (λ1 = λ3 = 0). Then, the expression of the 
temperature difference between the two ends of the stack can 
be written as : 
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An example of temperature difference between the ends of 
the stack obtained with this model is given in Fig. 2 for a 
given thermoacoustic device. This theoretical result can be 
compared with experimental and numerical ones recently 
available [2,3]. A good agreement is obtained when fitting 
the control parameter η2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Theoretical temperature evolution 
 

Conclusion 
 
The transient process has been modeled in terms of a system 
of a coupled heat conduction partial derivative equations and 
a set of initial and boundary conditions derived from the 
given physical situation. A solution has been obtained, using 
Laplace transform, when assuming drastic approximations. 
Another analytical solution which would allow to describe 
the evolution of the temperature at any point of the resonator 
is currently in progress. 
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