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Introduction 
Compliance with the Comprehensive Nuclear-Test-Ban 
Treaty (CTBT) in the atmosphere will be monitored by a 
worldwide network of 60 stations in the frequency range 
0.02 to 4Hz. This network is able to detect small explosions 
in the atmosphere as well as shock waves caused by 
supersonic aircraft or meteorites. Two wave-guides in the 
upper atmosphere, one between 10km and 30km and another 
at about 100km, allow infrasound waves to propagate over 
several thousands of kilometers.  

The French National Data Centre (in the CEA) uses and 
develop numerical modeling tools to characterize and study 
these infrasonic events. To take into account the nonlinear 
phenomena at the source and during the propagation, we 
develop a numerical approach to solve the Euler equations. 
In this paper, this method is compared in the linear domain 
with two other numerical modeling approaches based on the 
ray tracing technique and the parabolic approach. In our test 
case, the source is on the ground and generates at a distance 
of 1m a 1Pa pressure pulse of about 10s centered at the 
frequency of 0.1Hz. The pressure waveforms are computed 
at 450km from the point source for different altitudes from 
2km to 50km considering an atmosphere height of 200km 
and a constant density. 

The Eulerian approach  
In the numerical method, all variables (pressure, density, 
velocity) are defined at the center of the cells. Their 
variations are assumed to be linear. At each time step the 
equations are solved in two phases. The first one is a 
Lagrangian phase; the second one is a remapping phase 
which consists in a projection of variables on the initial grid. 
Globally the method is then an Eulerian-like method. 
Moreover we use a splitting method for each spatial 
coordinates. In plane geometry, the Lagrangian equations 
used in the first phase are: 
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M is the mass of the cell Ω, u and v are the velocity 
components, p the pressure, ρ the density, g the gravitational 

acceleration,  E the specific total energy and e is the specific 
internal energy. In the beginning of each Lagrangian phase, 
we have to evaluate pressures and velocities at the interfaces 
between cells to solve set of equations (1). In that purpose, 
we solve a Riemann problem and then an antidiffusion 
procedure is used to determine the desired values of velocity 
and pressure at the interfaces. The second phase consists in 
projecting the mass, the momentum and the energy on the 
initial grid. We assume linear variation of quantities in each 
cell using of slope limiters. Finally, after a computation time 
of 40 hours (CPU time), in cylindrical geometry, we obtain 
the pressure waveforms presented in Figure 1. 

Figure 1: Waveforms computed by the Eulerian approach. 
 

The parabolic approach  
The parabolic approximation was introduced at the 
beginning of the forties in order to solve problems involved 
in the electromagnetic waves. Later, it was used in various 
fields such as underwater acoustics then was adapted for the 
atmospheric propagation by Gilbert [1]. A known initial 
field is propagated step by step in the frequency domain 
from the source toward the receiver by solving the 
Helmholtz equation in cylindrical coordinates (z,r):  
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where P is the acoustic pressure, k the wave number, z is the 
altitude, r the distance and c the sound speed. We assume 
that:  

kr >> 1 and ( ) ( ) rjkezru
r
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Neglecting the backward waves, the solution of the equation 
(2) is: 
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After many developments described in the article of Gilbert 
[1], the field of pressure in a step can be written according to 
the field with the preceding step. We solve the pulse 
propagation problem via the frequency domain by Fourier 
synthesis in a post-data processing to obtain the signal 
waveforms in Figure 2. 

 
Figure 2: Waveforms computed by the parabolic approach 
for different altitudes. The computation time is small. 

 

The ray tracing approach  
From the early sixties, ray-based models have been used in 
underwater acoustics and in geophysics [2]. From the 
Helmhotz equation (2), after an inverse Fourier transform, 
the classical ray theory shows that the asymptotic pressure at 
a receiver point X may be written as a summation of 
contributions: 
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The summation is performed over each contribution pr of 
rays which arrive at the receiver at the time tr with the 
amplitude Ar. The wave form of a contribution is given by 
Sa, the analytic transform of the source time function S. The 
KMAH index (for Keller, Maslov, Arnold Hörmand), 
initially equal to zero, is the number of caustics crossed by a 
ray. Rays that arrive exactly at the receiver positions are 
obtained interpolating neighboring rays. Following this 
approach, we obtain the waveforms presented in Figure 3. 
The inherent problems of this technique are well known: 
waves that propagate in the shadow zone are not predicted, 
the amplitude near caustics are over estimated. But, ray 
tracing approach allows a straightforward physical analysis 
of wave propagation.  

Discussions 
Let consider the receiver at 2km from the ground in Figure 1 
for example. The first arrival at about 1325s propagates in 

the shadow zone due to the decrease of the sound speed in 
the lower part of the atmosphere. Then, at about 1475s, we 
obtain phases that travel above 140km where the sound 
velocity reaches 500m/s. The last arrivals, at 1540s, are 
refracted at about 100km where the sound speed is close to 
300m/s before to reach the receivers. 
 

Conclusions 
In this long range sound propagation test case, the Eulerian 
and parabolic approaches give very similar waveforms. In 
particular, their amplitudes, durations and arrival times are in 
good agreement. Results obtained by the ray tracing 
approach are better than expected especially on the ground 
receiver but the firsts arrivals are missing.  

 

Figure 3: Waveforms computed by the ray tracing 
approach for different altitudes. The dashed lines indicate 
some missing arrivals. The computation time is small. 
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