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Introduction
Arguably all known room acoustical simulation packages as-
sume geometrical, i.e. ”ray-like” sound propagation and are
thus limited to high frequencies and, if diffuse reflections are
adequately incorporated, to diffuse sound fields (large rooms).
Apparently, these approaches work well in a frequency range
where the wavelength is shorter than a fraction of a typical
room dimension, for instance

�������
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[1].

One possibility to cope with lower frequencies is to use so-
called scattering methods. These methods have evolved from
electromagnetic theory, where they are known as “Transmis-
sion Line Matrix” methods [2]. Under certain conditions, they
are equivalent to “Finite-Difference-Time-Domain” meth-
ods [3], which in turn have a long history in both electromag-
netics and meteorology. Applied to acoustical problems, these
methods are often called “Digital Waveguide” methods [4].
Because these terms, established in different fields, often mean
one and the same thing we dare to suggest “Scattering Ele-
ment Method” (SEM) as a unifying terminology. For a recent
in-depth treatment on scattering methods we refer the reader
to [5].

Recently, a method was suggested to extend a Scattering El-
ement System by a multiple-input-multiple-output boundary
model, using a matrix of digital filters [6]. In the present work,
this approach is supplemented by a stability criterion. The
method is then used to predict room acoustical parameters at
low frequencies in a reverberation room.

A Short Review of the SEM
Principle. The SEM operates on a spatial grid spanning the
sound field to be analyzed. The most common topology for
this grid is rectangular and equidistant. The distance � be-
tween the grid points (nodes) should be chosen to be smaller
than the wavelength by a factor of at least ten, in order to avoid
dispersion errors. Given � , the temporal sampling should take
place at a rate ����� � � 	�� � , with

	
being the speed of sound.

With these assumptions, the principle operation of the SEM
can be illustrated by imagining a system of tubes between the
nodes, in which only plane waves propagate at a speed of

� � 	
:

Consider a wave propagating within a tube from one node to
a second one, which, at a given time step ��� �

, is exactly at
mid-distance between the two nodes. Seen from the second
node, this is the incident wave from that particular direction
at time step ��� �

, ���! #" (fig. 1 left). One time step later, this
wave has propagated a distance � , thereby passing the node at
which it is scattered into all 6 tubes leaving the node. Thus, at
time step � , there are waves propagating from the node into all
6 directions, at mid-distance between the node and its adjacent
nodes. These scattered waves are called $ � . The amplitudes
of the $!� s are obtained from the impedance ratio at the node:
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Figure 1: Principle of the SEM: scattering governed by the
impedance ratio at the node.

minus two thirds of the amplitude of the incident wave for the
wave propagating back into the tube where the incident wave
came from, and one third of the amplitude of the incident wave
for all others (fig. 1 center). These scattered waves can then be
considered incident waves for the adjacent nodes (fig. 1 right),
and so forth. The algorithm thus consist of only two steps
which are continuously repeated:

1.) scattering: � �� &"(' $ � 2.) shifting: $ �)' � �
The sound pressure at any node one is interested in can be
obtained by summing over all waves incident onto this node:* node� � "+-, �.� . The whole algorithm can be implemented
very efficiently, such that most room-acoustical problems in
the frequency range below

���
	�� � �
can be solved conve-

niently using an ordinary personal computer.

Boundary Conditions. As the SEM is based on reflec-
tion/scattering, simple boundary conditions (locally reacting,
without memory) are best implemented using reflection fac-
tors, yielding a slightly modified step 2.) of the algorithm:

2.) shifting: � � �/$ �10 , reverse direction, (1)

where 0 is the (real) reflection factor. For non-locally reacting
boundaries with memory, this can be extended to

2.) shifting: 23�4�65%7%8:9;�(<>=;=�=�<>5)?@8:9;�! BA
�DC " 8E2 �� &" �F=�=;=E�DC A 8G9 �� BAIH

reverse direction,
(2)

where the 2 s and 9 s are vectors of incident and scattered
waves of all nodes at the boundary, and the C s and 5 s con-
tain filter coefficients of the reflection factor matrix J�K3LNMO�5�KPLQM � CBKPLQM . Thus, in the L -domain,

21KPLQM
�6JRKPLQMS9TK3LNMU= (3)

Stability Issues
To ensure numerical stability, both the SE system and bound-
ary models must be stable and passive. This is inherent in the
SE system [5], but not necessarily for the boundary models.



The boundary model from eq. 3 is stable if all poles of JRKPLQM
are within the unit circle. Passivity, on the other hand, re-
quires that for any possible excitation, the power reflected
from the boundary must be not greater than the power entering
the boundary, i.e. in the frequency domain,

VV 21KXW-M VV�YY)Z
VV 9TK[W-M VV;YYVVV JRKPLQM1\\ ]_^#`.a[b 9TKXW-M

VVV YY Z
VV 9TK[W-M VV YY =

(4)

Using the sub-multiplication property of the 2-norm,
VVV J�K3LNME\\ ]_^#` aPb 9TK[W-M

VVV YY Z
VVV JRKPLQM1\\ ]_^#` a[b

VVV YY
VV 9TKXW-M VV;YY H (5)

one ends up with the requirement thatVVV J�K3LNME\\ ]_^#` a[b
VVV Y Z

� = (6)

In other words, the largest singular value of the reflection fac-
tor matrix must be not greater than one for any frequency.

Simulation of a Reverberation Room
The SEM was used to predict room acoustical parameters ( c ,d

, egfih ) at 5 microphone positions in a reverberation room
(
� � ��jNk

m
+
) excited by one speaker in a corner of the room.

The room was spatially sampled at �l� � =nm m, resulting in� � �om jNp1� Hz. It was equipped with 4 plate absorbers (each� = qIr � = m m Y ) whose JRKPLQM were estimated on the basis of
measurements of the complete

��s r ��s
mobility matrix [6].

In order to limit the complexity (filter order) of the absorber
models, simulations were performed in 3rd octave bands.

As the SEM (in the form presented and used here) represents
a lossless system, it was necessary to add artificial damping in
order to account for the finite reverberation time of the empty
room. This was done by assigning a first order low-pass to all
wall nodes, using the scalar form of eq. 2. The parameters of
these low-pass filters (overall gain and damping at high fre-
quencies) were adjusted such that the predicted reverberation
times were within t)m k % with respect to the values observed
experimentally.

One simulation (one 3rd octave band, 16384 time steps) took
a few minutes on a modern PC (Pentium IV).

In fig. 2, measured parameters are plotted versus predicted
ones, for every 3rd octave band and every microphone posi-
tion. It should be pointed out that the shown error bars rep-
resent maximum/minimum values (for different assumptions
regarding the damping present in the empty room). The agree-
ment between prediction and measurement compares favor-
ably to the results found in recent round robin tests: Averaged
over all measurement positions, the maximum difference in
any 3rd octave band is 2.5 dB for e fuh and 1 dB for

d
.

Summary and Future Work
In this work, the so-called scattering element method (SEM)
was used to predict the acoustical behavior at low frequen-
cies of a reverberation room equipped with plate absorbers.
In order to ensure numerical stability of the simulation, the
absorber models (developed previously in [6]) were supple-
mented with a passivity criterion. Resulting predictions of
room acoustical parameters agree rather well with measured
values.
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Figure 2: Reverberation room: prediction and measurement. Shown
are means (circles, crosses, diamonds) and maxima/minima (error
bars) across various assumed values of the wall damping, for 5 mi-
crophone positions and 3 3rd octave bands (circles-125 Hz, crosses-
160 Hz, diamonds-250 Hz).

Future work should mainly concentrate on improving the
boundary models (numerical and measurement methods to
establish models, criteria to optimize expense vs. accuracy).
Naturally, further validation in real-life applications is neces-
sary.
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