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From Whitham function to CFD 
Sonic boom is the aerodynamical field of a supersonic body 
at very great distances (several hundred times the fuselage 
length) in an heterogeneous atmosphere. Sonic boom 
modeling distinguishes the aerodynamical flow around the 
aircraft (the “nearfield”) from the atmospherical 
propagation down to the ground (the “farfield”), though 
there is no fundamental physical difference between the two. 
The nearfield flow is considered as the source term for the 
acoustical approximation used in the farfield. This source 
term can be computed independantly from the sonic boom 
propagation. Relying on four approximations (slender body, 
linearized supersonic flow, farfield approximation and 
locally axisymmetrical flow), Whitham [1] proposed a  self-
consistent matching between aerodynamics and geometrical 
acoustics  for a body of revolution. Whitham “F” function 
has been generalized by Walkden [2] to an non-
axisymmetric body with lift. Given the progresses in 
computational fluid dynamics, the asymptotic Whitham 
formulation is nowadays superseded by CFD simulations of 
the flow around the aircraft down to a “sufficient” distance 
(a few times the fuselage lengths) tested practically by 
convergence tests at the ground level. Then the resulting 
pressure field is used directly as an input to the propagation 
code. However, some smoother matching can be realized. 
Indeed, in Whitham theory, only monopolar (representing 
thickness fuselage) and dipolar (representing lift) 
contributions are taken into account, contrarily to CFD 
simulations. Page and Plotkin [3] developed the so-called 
Multipole Matching Method for extracting Whitham 
function from CFD results. Other improved matching 
methods are reviewed by Plotkin and Page [4], and could be 
important in practice for low boom configurations. 

Rays and meteorology 
Geometrical acoustics is a high frequency approximate 
formulation of acoustics applicable to a 3D heterogeneous, 
moving medium for short waves. It states that, at first 
approximation, sound propagates along curves known as 
rays and defined so as to make the propagation time between 
the sound source and the receiver extremal (Fermat’s 
principle). Propagation equations reduce to a differential 
system of 6 equations, governing the position of a wavefront 
point and the wavefront normal vector along a given ray. 
The first application of ray acoustics to sonic boom is due to 
Esclangon [5] following researches during World War I to 
separate sonic boom of supersonic shells from blast waves 
from gun muzzles. Considering only rays launched 
downwards, their intersection with the ground defines the 
geometrical carpet, delineated by limiting rays that turn up 
exactly when reaching the ground (in the case of an upward 

refracting atmosphere). Beyond this cut-off, inside the 
shadow zone, sonic boom decays rapidly (see below). Flight 
at Mach 2 yields a carpet about 90 km wide in the standard 
atmosphere, but this width is very sensitive to meteo data 
and fluctuates a lot [6]. Moreover, in case of a downward 
refracting atmosphere, there is no geometrical cut-off and 
sonic boom does not decay as fast as in a shadow zone.  

Nonlinear distorsion 
In linear acoustics, amplitude is determined by an energetic 
principle (Blokhintsev invariant [7]), according to which 
sound amplitude is inversely proportional to the square root 
of a geometrical quantity (the ray-tube cross area) measuring 
the rate of convergence of adjacent rays. This quantity can 
be evaluated efficiently according to the method of Candel 
[8]. This results into a total set of 18 differential equations to 
be solved along each ray (12 for a stratified atmosphere). 
However, for sonic boom, this procedure is not sufficient, as 
high amplitudes and long propagation distances induce 
strong nonlinear effects, such that the sound speed is 
(slightly) dependant on the instantaneous wave amplitude. 
This leads to the formation and evolution of weak acoustic 
shock waves. The second key contribution of Whitham [9] 
was to recover nonlinearities, so that the pressure field 
satisfies an inviscid Burgers equation along each ray.  
Nonlinear effects explain the evolution of the temporal 
waveform of the pressure field, from a rather complex shape 
in the aircraft nearfield reflecting details of the aircraft 
geometry and lift distribution, to the ultimate “N” wave 
shape at the ground level. Guiraud [10] extended 
Whithams’s analysis to an heterogeneous and thermoviscous 
fluid with wind, while it was fully applied to the effective 
numerical evaluation of sonic boom by Hayes et al. [11] 

Absorption by molecular relaxation 
Weak shock theory predicts only ideal shocks with 
instanteneous pressure jumps, while sonic boom recordings 
show pressure jumps taking place over a finite time, from a 
few to several tens of milliseconds. This loosely defined 
“rise time” is an important parameter in controlling the 
subjective loudness of sonic boom. Thermoviscosity leads to 
rise times of the order or the microsecond, about 1000 times 
shorter than the observed ones. Indeed, at infrasonic and 
audible frequencies, the main source of sound absorption is 
the vibrational relaxation of diatomic molecules of nitrogen 
and oxygen. The key role of relaxation in the rise time of 
sonic boom has been outlined by Hodgson [12]. The 
assumption of steady shock allows a rather simple and 
numerically efficient  analysis of the absorption effects on 
sonic boom (Kang and Pierce [13]), concentrated in a “shock 
structure”. The validity of this steady state approximation 
has been examined by Cleveland [14]. It leads (Hodgson 



[12], Coulouvrat and Auger [15])   to the notion of “partially 
dispersed shock” : for low shock amplitudes, the nitrogen 
relaxation is dominant, with long rise times associated of the 
order of 10 ms or more, while for higher amplitudes, oxygen 
relaxation should also be taken into account. Then the shock 
structure is more complex and rise times are shorter. With a 
view to sonic boom minimization, it would be desirable to 
reduce boom amplitude below the critical value, so as to 
have long rise times dominated only by nitrogen relaxation. 
For mild temperatures, this fixes a goal of the order of 15 Pa, 
precisely the objective of the QSP program.  

Shadow zone 
For an upward refracting atmosphere, sound penetration 
inside the shadow zone is dominated by diffraction effects 
(Pierce [16]), with part of the energy of the limiting ray 
creeping along the ground and sheding off progressively 
diffracted rays that radiate energy inside the shadow zone. If 
the ground is of finite impedance, that decay is enhanced by 
ground absorption. This process has been applied to sonic 
boom penetration into the shadow zone and compared with 
reasonable agreement to Concorde recordings (Coulouvrat 
[17]). Results show that the rise time at the cut-off over a 
finite impedance ground is of the same order of magnitude 
or larger (10 to 30 ms) than the rise time induced by 
molecular relaxation or by atmospheric turbulence. Similar 
conclusions are found overseas (Boulanger and 
Attenborough [18]). Inside the shadow zone, the rise time 
increases almost linearly, up to values about 50 ms after a 
few kilometers. There, sonic boom is simply reduced to a 
low frequency rumble. As indicated by Concorde shadow 
boom heard along the coasts of Northern Brittany, it does 
not seem to be perceived anymore as annoying. The same 
kind of behaviour is expected for an unsteady flight at the 
carpet extremity during the deceleration phase. 

Sonic boom focusing 
The approximation of geometrical acoustics breaks down in 
the neighbourghood of surfaces called “caustics”, where the 
ray tube cross sectional area vanishes. Around caustics, the 
pressure field is amplified. As caustics are also zones of 
convergence of rays, diffraction effects, neglected in the 
geometrical approximation, must be reintroduced to limit the 
amplitude of the field there. Caustics are classified by the 
catatstrophe theory (Thom [19]), the simplest caustics being 
the fold “caustics” (the rainbow). Sonic boom focusing at 
fold caustics occurs at the ground level during flight 
acceleration or turns. Turn focusing can be avoided by 
preventing sharp turns at low Mach numbers, but 
acceleration focusing cannot be avoided by realistic 
manoeuvers. In case of shock waves (as for sonic booms), 
diffraction effects alone are unsufficient to obtain a bounded 
signal, and local nonlinearities are also essential. This lead 
Guiraud [10] to derive the mixed-type nonlinear Tricomi 
equation satisfied locally by the pressure field around the 
caustic. An approximate analytical solution limited to signals 
with well separated shocks, was proposed by Gill and 
Seebass [20]. A numerical procedure has been developed by 
Auger and Coulouvrat [21]. It was improved by Marchiano 

et al. [22] and applied to realistic estimations of sonic boom 
focusing coupled to matching with nearfield CFD 
computations. Either approximate or numerical simulations 
compare well with test flights (Wanner et al., [23], Downing 
et al., [24]) though a precise and quantitative validation of 
Guiraud’s theory by laboratory scale experiments is only 
very recent (Marchiano et al. [25]). Sonic boom focusing 
remains a critical issue, as it may prevent a supersonic 
aircraft to accelerate overland, even if designed at cruise 
speed for an acceptable low boom. 

These aspects have been integrated into an advanced 
software “BANGV” dedicated to the simulation of the sonic 
boom of a manoeuvering aircraft in a stratified and 
absorbing atmosphere with wind over an absorbing ground. 
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