Characterization of porous materials at audio frequencies.
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Introduction

The acoustic characterization of porous materials satu-
rated by air such as plastic foams, fibrous or granular
materials is of great interest for a wide range of indus-
trial applications. These materials are frequently used
in the automotive and aeronautics industries and in the
building trade. One important parameter which appears
in theories of sound propagation in porous materials at
audio frequencies is the permeability ky. The permeabil-
ity intervenes in the description of the viscous coupling
between the fluid and the structure. As such, in studies of
acoustical properties of porous materials, it is extremely
useful to be able to measure this parameter. The per-
meability ko is related to the flow resistance. The flow
resistance of porous material is defined as the ratio be-
tween the pressure difference across a sample and the
velocity of flow of air through that sample; the flows be-
ing considered are steady and nonpulsating. This is quite
analogous to the definition of electrical resistance as the
ratio between voltage drop and current. The specific flow
resistivity o of a porous material is defined as the flow
resistance per unit cube. The relation between perme-
ability (ko) and specific flow resistivity (o) is given by:
ko = n/o, where 7 is the fluid viscosity.

Model

In the acoustics of porous materials, one distinguishes
two situations according to whether the frame is moving
or not. In the first case, the dynamics of the waves due
to the coupling between the solid skeleton and the fluid
is well described by the Biot theory[l]. In air-saturated
porous media the structure is generally motionless and
the waves propagate only in the fluid. This case is de-
scribed by the model of equivalent fluid [2] which is a
particular case of the Biot model, in which the inter-
actions between the fluid and the structure are taken
into account in two frequency response factors: the dy-
namic tortuosity of the medium «(w) and the dynamic
compressibility of the fluid included in the porous mate-
rial f(w). In the frequency domain, these factors mul-
tiply the density of the fluid and its compressibility re-
spectively and represent the deviation from the behav-
ior of the fluid in free space as the frequency changes.
The range of frequencies such that viscous skin thickness
{ = (2n/wpy)*/? (w is the angular frequency) is much
larger than the radius of the pores r, % > 1, is called
the low-frequency range. For these frequencies, the vis-
cous forces are important everywhere in the fluid. At

the same time, the compression-dilatation cycle in the
porous material is slow enough to favor the thermal ex-
changes between fluid and structure. At the same time,
the temperature of the frame is practically unchanged by
the passage of the sound wave because of the high value
of its specific heat: the frame acts as a thermostat. In
this case the isothermal compressibility id directly appli-
cable. In the time domain, the dynamic tortuosity and
compressibility of the fluid included in the porous ma-
terial act as operators and in the viscous domain (low
frequency approximation) their expressions are given [2]
by
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In these equations, d(t) is the Dirac operator and 8{1 is
the integral operator 9; 'g(t) = f(fg(t)dt', n and py are,
respectively, the fluid viscosity and the fluid density and
v the is the adiabatic constant. The relevant physical
parameters of the model are the static permeability ky =
n/o, o the specific flow resistivity. In this framework, the
basic equations of our model can be written as
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where * denotes the time convolution operation, p is the
acoustic pressure, v is the particle velocity and K, is the
bulk modulus of the air. The first equation is the Eu-
ler equation, the second one is the constitutive equation.
Along the x—axis , these equations become :
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The Euler equation is reduced to the Darcy’s law which
expresses the balance between the driving force of the
wave and the drag forces n¢v/ko due to the flow resis-
tance of the material. The fields which are varying in
time, the pressure, the acoustic velocity, etc., follow a
diffusion equation [2],
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The diffusion constant D is a damping term due to the
viscous and thermal effects which take place in the porous
material. The amplitudes of reflected and transmitted
waves from a slab of porous materials can be determined
by the relevant boundary conditions [3].



Acoustic Measurements

Experiments are performed in a guide pipe (60 m) hav-
ing a diameter of 5 cm. A sound source Driver unit
"TOA” constituted by loudspeaker Realistic 40-9000 is
used. Pulses are provided by synthesized function gener-
ator Standford Research Systems model DS345-30MHz.
The signals are amplified (type 2610 Bruel&Kjaer) and
filtered (model SR 650-Dual channel filter, Standford Re-
search Systems). The signals are measured using one mi-
crophone (Bruel&Kjaer, 4190). The experimental setup
is shown in Fig. 1. Consider a cylindrical sample of
plastic foam (diameter 5 cm) with the following charac-
teristics: thickness 2.5 cm, porosity ¢ = 0.9 Fig. 2 shows
the experimental incident signal (solid line) and exper-
imental transmitted signal (dashed line). From Fig. 2,
we can see that there is no delete between the incident
and transmitted signals, the two waves have the same
arrival time. This means that there is no propagation
in the porous material. The transmitted wave is just at-
tenuated with no significant dispersion comparing to the
incident signal, the two signals have the same spectral
bandwidth (Fig. 2). These results are in adequacy with
the theory developed in the previous section, in which the
propagation equation is reduced to a diffusive equation
(Eq. 1). Using the experimental data of incident and
transmitted waves, we solve the inverse problem using
the least square method which minimizes U(o) defined
by
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where pgw(m,ti)i:172,,,,N represents the discrete set
of values of the experimental transmitted signal and
pH(@,t;)i=1,2,..n is the discrete set of values of the sim-
ulated transmitted signal. Figure 3 shows the variation
of the cost function U with the specific flow resistivity.
The obtained optimized value of o is 38000 Nm™*s, it
permeability (ko) can be deduced easily for the value of
o; ko = 500 Darcy. Fig. 4 shows the comparison be-
tween the simulated transmitted signal calculated with
the optimized value of ¢ and experimental transmitted
signal. The correspondence between theory and experi-
ment is good, which leads us to conclude that this simple
method is well appropriate for estimating the specific flow
resistivity (and thus the permeability) of porous material
with rigid frame.
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Figure 1: Experimental set-up for ultrasonic measurements.
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Figure 2: Incident signal (solid line) and transmitted signal
(dashed line).
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Figure 3: Variation of the cost function U with the specific
flow resistivity o.
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Figure 4: Comparison between simulated transmitted signal
(solid line) and experimental transmitted signal (dashed line).



