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Introduction 
The propagation of modal waves in materials is of great 
interest for characterization and defect detection in 
multilayered structures. Surface waves, such as Rayleigh or 
Stoneley waves, are well suited to inspect the behavior of 
material interfaces [1]. Lamb waves are used with success to 
detect defects in plates [2] and to control pipes for gas or 
petroleum. 
A number of technics exist to generate such modal waves. 
Lamb waves may be excited by interdigital transducers at 
the surface of piezoelectric crystals or on piezoelectric films 
deposited on a nonpiezoelectric substrate.[3]. In non 
destructive testing devices, these modes may be generated 
by ‘liquid wedge trensducers’[4], or by ‘air-coupled 
ultrasonic transducers’[5].On a theoretical poin of view, 
several authors have studied the generation of surface or 
guided wave; one may mention Victorov [6], Miklowitz [7], 
Achenbach [8]]  
The aim of this paper is to present a numerical simulation 
tool in order to describe the generation of modal waves by a 
bounded acoustic beam incident on a layered structure. 
Cartographies and cross sections for stress fields and 
displacements are obtained which show the generation of 
(generalized) Lamb waves in a plate immersed in a fluid, as 
well as the Rayleigh waves along the fluid/solid interfaces 
and the Stoneley wave for the case of a solid/solid interface.  

The case of Lamb waves 
A monochromatic bounded beam, described by a field 
variable iϕ , is incident on a solid elastic plate ( )s  with 

thickness h, immersed in a fluid ( )f . If θ  denotes the 

incidence angle, the wave number xk  in the direction x of 
the layer is given by 

0 sinxk K θ=    (1.1) 

where 0K  is the wave number in the fluid ( )f  at the given 
frequency. 
Strictly speaking, the Lamb waves exist for a plate in 
vacuum. Writing that the normal stress is zero on each free 
surface ( 0zz zxT T= =  for 0 ,z h= ) one obtains the 
dispersion relation which splits in two equations for the 
wave number xk  of the symmetric ‘S’ and antisymmetric 
‘A’ modes. Now, in the case of the immersed plate, if we 
choose a pair 0( , )xK k  for the incident beam such as the 
representative point be situated on a Lamb dispersion branch 
('S' or 'A'), one may expect that the corresponding mode will 
be generated in the plate. 

The acoustic fields in ( )s  and ( )f  are calculated by using 
a plane wave decomposition and a convenient procedure to 
evaluate numerically the corresponding Fourier integrals. 
Figure (1) shows a cartography in the physical plane for the 
stress field in the case of the mode S1. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

The case of interface waves 

Rayleigh waves 
Again for the solid plate, but at high frequency, the modes 
Ao and So join together to give the Rayleigh surface wave. 
For such a choice of the pair 0( , )xK k , one may expect to 
generate the (generalized) Rayleigh wave along the incident 
interface ( )f / ( )s . This is clearly visible on the cartography 
of figure (2). Actually, the cross sections for stress 
components given on figure (3) show that a second Rayleigh 
wave is generated along the second interface ( )f / ( )s , 
which is an interesting result for control perspectives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 1 : Lamb wave generation (mode S1) by a 
bounded beam  (cartography of normal stress) 

FIG 2 : Rayleigh  wave generation by a bounded beam  
(cartography of normal stress) 
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Stoneley wave. 
This last result encourages to study the case of a fluid ( )f / 

solid 1( )s / solid 2( )s  structure with perfect bonding 

conditions along the 1( )s / 2( )s  interface. When the two 
solids are semi-infinite and their physical properties are 
conveniently choosen, it is known that a Stoneley wave may 
propagate along the interface. 
On figure (4) we draw the cross sections of the displacement 
components for the exact Stoneley wave and for the case of 
the structure ( )f / 1( )s / 2( )s  excited by a bounded beam. 

The generation of a Stoneley wave along the 1( )s / 2( )s  
interface is obviously obtained (here in the case of physical 
parameters for a tungsten/aluminium interface). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conclusion 
By a numerical procedure based on the Fourier integral 
representations of the acoustic fields, it is possible to 
simulate the generation of modal waves by a bounded 
acoustic beam in a layered structure. Cartographies for the 
stress or displacement components may be obtained. The 
generation of the desired modal wave is clearly proved by 
drawing the cross section for these variables accross the 
structure. This numerical simulation tool may be used to 
study the perturbation induced by a finite defect on an 
interface of the structure. 

Bibliography 
 
[1]   D. A. Cook et Y. H. Berthelot, “Detection of small 
surface-breaking fatigue cracks in steel using scattering of 
Rayleigh waves,” NDT&E International 34, 483-492 (2001). 
[2]   C. Eisenhardt, L. J. Jacobs, et J. Qu, “Experimental 
Lamb wave spectra of cracked 
plates,” AIP Conference Proceedings 509.A, 343-349 
(2000). 
 
[3]   Y. Jin and S. G. Joshi, ‘‘Coupling of interdigital 
transducer to ultrasonic Lamb waves,’’ Appl. Phys. Lett. 58, 
1830–1832 ~1991!. 
[4]  X. Jia ‘‘Modale analysis of Lamb wave  
generation in elastic plates by liquid wedge  
transducers,’’ J. Acoust. Soc. Am. 101,834 (1997) 
 
[5]  M.Castaings and P. Cawley ‘‘The  
generation, propagation, and detection of Lamb  
waves in plates using air-coupled ultrasonic  
transducers’’, J. Acoust. Soc. Am. 100, 3070 (1996)  
 
[6]   I. A. Victorov, Rayleigh and Lamb Waves ~Plenum, 
New York, 1967!. 
 
[7]J. Miklowitz, The Theory of Elastic Waves and 
Waveguides ~North-Holland, Amsterdam, 1978!. 
[8]  J. D. Achenbach, Wave Propagation in Eastic Solids 
~North-Holland, Amsterdam, 1973!. 
 
 
 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

z

co
nt
ra
in
te

p p

Tzz 

Tzx 

interface 1 

interface 2 

FIG 3:  Real parts of stress components showing the 
generation of two Rayleigh waves by the bounded beam
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FIG 4: Generation of a Stoneley wave by a bounded beam
- continuous line : exact Stoneley wave 
- dotted line : generalized Stoneley wave 
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