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Introduction
Experiments were performed to study the decay of the
acoustic coherence due to turbulent fluctuations in the
atmosphere. The experiment took place at clear sky and
an average wind of 3.9 m/s on a sports lawn. A horn
loudspeaker at a height of 5 m was driven by bandwidth
limited (approximately 1..10 kHz) pulses. At a distance
of 106 m in downwind direction the acoustic coherence
was determined by a lateral array of microphones (height
5 m). Time windowing was used to minimize ground
reflections. Temperature and velocity fluctuations were
monitored by a hot wire probe and an ultrasonic anem-
ometer located at the filled microphone in Figure 1.
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Figure 1: Sketch of the setup.

Velocity data
Temperature fluctuation were neglegible for sound
propagation in this experiment. The ultrasonic anem-
ometer sampled the three velocity components at a rate
of 1.03 Hz for two hours. From the time series the one-
dimensional spatial power spectra of the velocity fluctu-
ations along the mean wind vector were determined. In-
troducing co-ordinates with the x-axis aligned with the
mean wind, the y-axis in the horizontal plane and the z-
axis oriented vertically, Figure 2 shows the resulting spec-
tra Fr(k), Fy(k) and Fz(k) for the velocity components
vx, vy, vz respectively. For large values of k all spectra
show a k−5/3 behaviour, indicating an inertial subrange
(ISR). But it appears that this ISR is not isotropic, since
for isotropic, incompressible turbulence the condition

Fy(k) = Fz(k) =
4
3
Fx(k)

should hold which is not met by the data.

By fitting the appropriate one-dimensional von Kármán -
spectrum to Fr(k), the parameters Ĉ2

v = 0.52 m/s2 m−2/3

and k̂0= 0.03 m−1 were obtained. It should be noted that
since Fr(k) and Fy(k) coincide in Figure 2, the transverse

spectrum Fy(k) is well fitted by the radial spectrum with
the same parameters.

In Figure 3 the transverse spectra for isotropic von
Kármán turbulence are fitted to Fy(k) and Fz(k). In
order to model the behaviour in the ISR, the structure
constants had to be adjusted by a factor 3/4 for both
transverse spectra (Figure 3). Since the height of the
sensor (5 m) is much smaller than k̂−1

0 , the outer scale
for the vertical component is smaller than that for the ho-
rizontal components, a value of k0 = 2·k̂0 for Fz(k) was
found. For Fy(k) a value of k0 = 1/1.7 · k̂0 was obtained.
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Figure 2: One-dimensional spectra. At high wave num-
bers the spectra show a -5/3 behaviour (Kolmogorov rr).
But the transverse spectra are not shifted by a factor of 4/3
(Kolmogorov tt).
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Figure 3: Fits of the one-dimensional von Kármán spectrum
functions to Fy(k) and Fz(k). The structure constant had to
be adjusted by a factor of 3/4. Both spectra have different
values for the outer scale.

Acoustic coherence
The acoustic coherence

γ2(ρ) =
|〈p1(ω)p∗2(ω)〉|2

〈p1(ω)p∗1(ω)〉 〈p2(ω)p∗2(ω)〉

was determined, here p1(ω) and p2(ω) denote the spectra
measured at two microphones at a lateral distance ρ, ω is



the angular frequency, 〈〉 denotes averaging. By choosing
appropriate pairs of microphones, the coherence could
be determined for ρ = d0, 2d0, ...8d0, where d0=79 cm
is the distance between the two outer microphone pairs
(Figure 1).

In Figure 4 the measured coherence is shown as a function
of frequency. For lateral distances greater than 4 d0 the
coherence was less than 0.1. The decay of coherence at
low frequencies is due to the band-passed signal source.

The well-know Parabolic Equation Method (PEM) was
used to predict the coherence. This theory in principle
includes anisotropic turbulence, as can be seen from the
general solution for the mutual coherence function given
for instance in [1]. Rewritten to the coherence γ2 this
solution reads for homogeneous turbulence

γ2(x, ~ρ) = exp
(
− ω2

4c2
0

x

∫ 1

0

dβ [A(0) − A(β ~ρ)]
)

(1)

here ~ρ is the separation vector between the two micro-
phones and x the propagation distance. A(~ρ) is given
by

A(ρ) =
∫ ∞

−∞
dx Bε(x, ~ρ) (2)

where Bε is the correlation function of the fluctuations
of the effective index of refraction for a separation vector
(x, ~ρ). Note that only the correlation function in the
plane of the microphones is required in this equation.

The PEM predicts a decay of the coherence proportional
to exp(−ω2 . . .). This prediction was tested by fitting
straight lines to a plot of 5 log 10(γ2) vs. ω2 in Figure 5.
The small deviations from the straight line are probably
due to reflections between the microphones.

Inserting an isotropic von Kármán spectrum into equa-
tions 1 and 2 leads to [2]

γ2(x, ρ) = exp
(
−γv

4x

k0ρ
R(k0ρ)

)
(3)

Here γv is a constant depending on C2
v , k0 and ω2. R(k0ρ)

is a function of k0ρ only. The coherence obtained from
this equation is shown in Figure 4. While equation 3
predicts the measurements for small values of the lateral
distance ρ fairly good, the calculated coherence for large
values of ρ is much greater than the observed one. A more
sensitive test is obtained from equation 3 by calculating
the ratio

ln(γ2(ρ1)) / ln(γ2(ρ2)) = R(k0ρ1) / R(k0ρ2). (4)

From this equation an apparent value of k0 can be de-
termined uniquely for each pair of measured coherences.
Inserting the slopes of the fits in Figure 5 into equation 4,
values ranging from 0.12 m−1 to 0.001 m−1 were obtained
for the apparent k0. The deviation from k̂0 increases with
ρ1 and ρ2. The huge variation indicates that the decay
of coherence is not properly described by the isotropic
theory.

Calculating A(ρ) from equation 2 from measured tur-
bulence data requires the knowledge of Bε in the whole

(x, ρ)-plane, which is not available from our measure-
ment. Since the radial and transverse velocity spectra
are both well fitted by the radial spectrum function it
was assumed that Bε(x, ρ) in equation 2 depends on the
magnitude

√
x2 + ρ2 only. The predictions of these mod-

ell are even worse than that of the isotropic theory.

Conclusion
In this paper radial and transverse spectra of the ve-
locity fluctuations were calculated directly from anemo-
meter data. These data show an anisotropic turbulence.
Surprisingly these data indicate that even in the inertial
subrange the well known relationship between radial and
transverse spectra does not hold.

The parabolic equation method was used to predict the
decay of acoustic coherence. The basic property of PEM
solution, the exp(−ω2 . . .)-decay of the coherence was
confirmed by our data. The solutions for isotropic turbu-
lence were not in very good agreement with the measured
data.
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Figure 4: Measured acoustic coherence for different lateral
distances ρ. The solid lines are the theoretical values for iso-
tropic turbulence using the parameters from the wind meas-
urement.
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Figure 5: Measured acoustic coherence vs. ω2 and straight
line fits.
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