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Introduction
Numerical solutions for scattering in acoustics are usu-
ally obtained by methods of finite element or boundary
element type. Being quite versatile on the hand, these
methods do not provide estimates for the accuracy of
the solution. Thus analytical solutions for sophisticated
testcases are of major importance.

Consider a hollow sphere with thin, rigid walls and an
opening linking the inner and outer space. As sketched
in fig. 1 a plane wave pe irradiates the sphere creating a
scattered field ps and a field inside the sphere pi. The
radius of the sphere is denoted by r0, the angle of the
opening by δ. For simplicity the wave vector of the in-
coming wave is chosen to be in the direction of the sym-
metry axis of the sphere. The wave number is denoted
by k.

The example was chosen on one hand because it com-
bines many critical aspects of computational solutions,
namely boundary conditions at infinity for incident and
scattered waves as well as resonance effects and coup-
ling for the inner wave. On the other hand analytical
solutions including estimates can be found.
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Figure 1: sketch of the problem with the incident wave pe,
the scattered wave ps and the inner field pi

Statement of the problem
Introducing spherical co-ordinates r, ϑ, φ the solutions of
the Helmholtz equation can be expanded into an infinite
series

pe =
∑

l

al jl(kr) Pl(cos(ϑ)) (1)

ps =
∑

l

bl hl(kr) Pl(cos(ϑ)) (2)

pi =
∑

l

cl jl(kr) Pl(cos(ϑ)). (3)

Here al, bl, cl are the coefficients of the expansion, jl(kr),
hl(kr) are the spherical Bessel and Hankel functions, Pl

denote the Legendre polynomials. Note that any solution
given by eqs. 1 to 3 satifies the boundary conditions at
infinity automatically.

Hence a solution is found by determining the coefficients
bl and cl such that the boundary conditions (BC) on
the surface are satisfied. Namely the pressure has to be
smooth in the opening, leading to

pe(kr0) + ps(kr0) + pi(kr0) = 0. [opening] (4)

p′e(kr0) + p′s(kr0) + p′i(kr0) = 0 [opening] (5)

Here the prime denotes the normal derivative p′e =
∂pe/∂r.

Additionally the normal derivative of the outer and inner
field has to vanish on the wall,

p′s(kr0) + p′e(kr0) = 0 [wall] (6)

p′i(kr0) = 0 [wall] (7)

Note that due to eq. 7 the eqs. (5), (6) can be combined
to read

p′e + p′s + p′i = 0 [everywhere] (8)

So the aim of this paper is to find solutions to eqs. (4),
(7) and (8).

Variational formulation
Solutions were sought by minimizing the target functions

H :=
∫

wall

dS |p′i|
2 (9)

G :=
∫

opening

dS |pe + ps − pi|2 (10)

together with eq. 8. Attempting to find simultaneous
minima of H and G leads to conflicting linear constraints.
So the minimum of H+α G with the weight factor α were
determined. A sample solution is shown in fig. 2. The
accuracy of the solution is checked easily by plotting the
surface pressure and velocity (fig. 3). The pressure BC
(eq. 4) is satisfied very well. Inner and outer velocity are
equal on the whole surface, the velocity vanishes reason-
ably well on the wall.

Good solutions were found for a broad range of paramet-
ers, 8 < kr0 < 30 and 10◦ < θ < 170◦. Two phenom-
ena were observed, firstly the solution degrades gradu-
ally with decreasing kr0 for kr0 < 8. Secondly there are
certain critical values of kr0 with a comparatively poor
solution. In both cases increasing the number of terms in
eqs. 1 to 3 does not improve –actually not change– the
solution.



Accuracy and stability

Two conditions control the accuracy of the solution.
Firstly the incindent wave has to be well approximated by
the truncated series eq. 1 on the surface of the scatterer.
A well known rule states that the series may be truncated
at lmax � kr0. Secondly lmax has to be chosen such
that the geometry of the boundary conditions is prop-
erly sampled by the Legendre polynomials. The number
of Legendre polynomials required is therefore independ-
ent of k, in the examples given here an lmax of approx.
30 proved sufficient to ensure good solutions.

The behaviour of the solutions is understood from prop-
erties of the Bessel (jl(ρ)) and Neumann (nl(ρ)) func-
tions, the latter being the real part of the Hankel func-
tions. Due to the singularity in the Bessel differen-
tial equation the Bessel functions start like ρl, the Neu-
mann functions have a pole of order ρ−(l+1) (fig. 4) for
ρ �

√
l(l + 1).

While decreasing the wavenumber for fixed values of
lmax, the very small contributions of jl compete with
the very large contributions of nl in the system mat-
rix. This explains the deterioration of the solutions for
small wavenumbers. Increasing lmax beyond a certain
limit does not improve the solution, since adding Bessel
functions of high order creates a small contribution com-
pared to those of lower order, see fig. 4. A reconditioning
scheme might improve the solutions in both cases but no
stable scheme was found yet.

Modal solutions

In fig. 5 a sample solution of a modal approach is shown.
In this approach eq. 10 was expanded into the eigenmodes
of the homogeneous eq. 9. Compared to the direct solu-
tion of fig. 3 the modal approach gives better results for
the velocities while the pressure condition is not satisfied
very well. The reason is that regardless of lmax only a
limited number of eigenmodes was found due to the prop-
erties of the bessel functions as discussed above. With a
proper reconditioning scheme the modal solutions appear
to be most promising for future work.

pabs: delta=45, kr0=12, lmax=30, alpha=1,H + alpha G
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Figure 2: magnitude of the sample solution for kr0=12,
δ=45◦, lmax = 30, α = 1
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Figure 3: surface values for the sample solution of fig. 2
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Figure 4: properties of jl and nl close to the origin.

Abs: inside

Abs: outside

delta=45, kr0=12, lmax=30, alpha=1,modal

angle
0 50 100 150

su
rf

ac
e 

pr
es

su
re

0

2

4

6

8

10

Abs: inside

Abs: outside

delta=45, kr0=12, lmax=30, alpha=1,modal

angle
0 50 100 150

su
rf

ac
e 

ve
lo

ci
ty

0

0.5

1

1.5

2

Figure 5: modal solution for the example of fig. 2.

Summary
Solutions for the scattering problem were found for a
broad range of parameters. The limits of the algorithm
were traced back to the properties of the Bessel and
Hankel functions, a reconditioning scheme might be de-
rived from this. Since the accuracy of the solutions is eas-
ily checked by analyzing the surface field, the algorithm
provides a good tool to benchmark numerical codes.


