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Introduction
In recent years, the vibro-acoustic behaviour of a prod-
uct has become a design criterion of growing importance.
This behaviour is mainly determined by the steady-state
dynamic deformations in the mechanical structure of the
product. Commonly, the finite element method (FEM)
is used to predict the dynamic behaviour of structures.
This method expands the dynamic field variables, within
each element, in terms of local, non-exact shape func-
tions. As a result, the size of the model becomes pro-
hibitively large for increasing frequencies, thereby lead-
ing to a practical frequency limit. The newly devel-
oped wave based method (WBM), based on the indirect
Trefftz method [1], expands the field variables in terms
of global wave function expansions, which exactly satisfy
the governing dynamic equations. The WBM exhibits a
higher computational efficiency, such that it will be ap-
plicable also for higher frequencies. Although the elasto-
dynamic calculations are the computationally most de-
manding part in a vibro-acoustic problem, until now the
research focused mostly on acoustic systems.

Current research extends the applicability of the WBM
towards three-dimensional elasto-dynamic applications.
This paper discusses the development of the WBM for
analysing the behaviour of an assembly of flat plates,
coupled at arbitrary angles. Numerical validations con-
firm that the WBM achieves high accuracy with sub-
stantially smaller models in comparison with the finite
element method.

Problem Definition
The problem case considered in this paper consists of
two flat plates coupled under an angle of 45 ◦, as shown
in Figure 1. All plate boundaries are clamped and the
first plate is excited by a harmonic normal point force
F applied at position (xF , yF ). According to the thin
plate theory [2], the steady-state out-of-plane displace-
ments wzi (i = 1, 2) are governed by the following differ-
ential equation:

∇4wzi(xi, yi)− k4
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wavenumber kbi and the plate bending stiffness Di are
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with hi, Ei, νi and ρi, respectively, the plate thickness,
the elasticity modulus, Poisson coefficient and the plate

Figure 1: flat plate assembly.

material density. The steady-state in-plane displacements
are described by the dilatational and rotational strains ei

and Ωi (i = 1, 2),
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The dilatational and rotational strain are governed by
the following differential equations,

∇2ei + k2
liei = 0 and ∇2Ωi + k2

tiΩi = 0, (4)

where the in-plane longitudinal and shear wavenumbers
are defined as,
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The interface between the two plates is modelled by im-
posing the force equilibrium and displacement compati-
bility, thus leading to eight interface conditions.

Basic Concept of the WBM
This section will present very briefly the basic concepts
of the WBM. For further details the reader is referred to
[3] and [4].

The different field variables wzi, ei and Ωi are approx-
imated as a linear expansion of wave functions, which
exactly satisfy the governing homogeneous equations, ex-
tended with some particular solutions to account for the
inhomogeneous part of the governing equations. As a
result, the field variable approximations satisfy a priori
the governing differential equations, irrespective of the
contribution factors of the wave functions. These con-
tributions are determined through minimization of the
approximation error of the boundary and interface con-
ditions in an integral sense. To do so, the boundary con-
ditions have to be transformed into a weighted residual or



a least-squares formulation. Furthermore a complete set
of wave functions must be selected from the infinite set
of wave functions, which satisfy the dynamic equations,
to ensure the convergence of the WBM.

Comparison of the WBM with the
FEM
This section shows the prediction results for the problem
defined in Figure 1 and compares the efficiency of the
WBM with the FEM. The considered structure consists
of two flat aluminium plates with thickness h1 = h2 =
0.005m. The different material constants of aluminium
are E = 70 · 109N/m2, ν = 0.3 and ρ = 2790kg/m3. All
the plate boundaries are clamped and a unit normal point
force is applied at position (xF , yF ) = (0.5625m, 0.125m)
of plate 1.

Figure 2: prediction result for the out-of-plane displacement
at 900Hz for the first and second plate respectively.

Figure 2 shows the out-of-plane displacement of the two
plates when excited at 900Hz. These predictions result
from a weighted residual wave model with 1008 bending
wave functions and 848 dilatational and rotational wave
functions. The least-squares wave model yields the same
result.

Figure 3: convergence curves for the out-of-plane displace-
ments at 900Hz.

The advantage of the smaller WBM prediction mod-
els is to some extent annihilated by the fact that the
model matrices are fully populated, complex and fre-
quency dependent. To make a fair comparison between
the WBM and FEM, Figure 3 displays the relative pre-
diction error of the out-of-plane displacement of the point
(x1, y1) = (0.7m, 0.125m) against the CPU times. For
the WBM the indicated times include both the times
needed for the construction of the model as well as for
solving the model. For the FEM, only the direct solu-
tion time is included in the indicated CPU times. A
FE model with 1 326 405 DOF’s and a wave model with
1680 bending wave functions and 1424 dilatational and
rotational wave functions are used as reference solutions,
respectively, for the FE models and the WBM mod-
els. The FE predictions were calculated using the di-
rect solution method and a 4-noded quadrilateral shell
discretization. Figure 3 clearly indicates the beneficial
convergence rate of the WBM in comparison with the
FEM. Earlier research regarding acoustic and single plate
problems has identified the weighted residual method as
the most efficient method when compared with the least-
squares method. For this example, however, this con-
clusion no longer holds, although an improvement of the
weighted residual method can be expected by adding ad-
ditional corner point residuals, as was done for single
plate problems[3].

Conclusions
This paper applies the WBM for the steady-state dy-
namic analysis of coupled plates. The numerical example
illustrates the beneficial convergence rate compared with
the FEM. Another major advantage of the WBM com-
pared with the FEM is the possibility to easily identify
the prediction accuracy by evaluating the field variables
on the boundaries.

Due to the enhanced convergence properties, the prac-
tical frequency limitation of the proposed prediction
method can be shifted towards much higher frequencies
than possible with the FEM.
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