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Figure 1: Baffled plate and “infinite” cylinder, coordinate
system and variables

Introduction
In this paper, the influence of added curvature, on the
sound radiation will be investigated in two dimensions
( ∂

∂z = 0), by comparing the radiation of a baffled plate
and a cylinder with various radii.

Baffled Plate (BP)
The “baffled plate” is a plate of height ` built into a
infinite rigid wall (see Fig. 1a). The plate is allowed to
vibrate in a numerous variety of modes, whose velocity
distribution can be described by a sum of orthogonal sine
and cosine modes:
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2
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` ,

where d is the order of the mode, and v0 the peak value
of velocity. The sine-modes have nodes at the edges,
whereas the cosine-modes have anti-modes or loops, each
leading to different radiation characteristics. The ra-
diated pressure, in general and in the far-field, is the

weighted sum of all monopole “sources” H
(2)
0 (k0rm) on

the plate[1]:
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4
)V (ky = −k0 sin ϑ).

The law of cosine was used to approximate rm (see
Fig. 1) by r − ym cos(π

2 − ϑ) in the exponential term
of the asymptotic expansion of the Hankel-function[2]

H
(2)
0 (k0rm) ≈

√

2
k0rmπ e−j(k0rm−π/4), and the radius rm

was replaced by r in the non-phase dependent term, leav-
ing the far-pressure proportional to the Fourier transform
of the plate velocity V (ky = −k0 sin ϑ) in y-direction.

The directivity pattern (DP), |D(ϑ)|2, is the angle de-
pendent part of the Intensity (Ifar = 1

2ρc |pfar|
2) in the
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Figure 2: DP in dB over dλd/λ0 sin ϑ with λd/λ0 = 2 of
cosine- (-) and sine-mode (- ·) of order: a) d = 6, b) d = 7.

far-field:
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with α0 = 0 for cosine-modes and α0 = −π
2 for sine-

modes. In Fig. 2 the DP, governed by the two sinc-
functions, is displayed over dλd/λ0 sin ϑ, for cosine- and
sine-modes of even and odd order d = 6, 7. The maxima
lie at ±d, which expressed in angles are sinϑ1,2 = λ0/λd

(ϑ1,2 = ±30◦). This depiction also shows that for low
frequencies (λd ¿ λ0) the DP has dipole characteristics
(imagine mirror image) for all mode-cases, except in the
case of the odd sine-mode, for which it has monopole
characteristics.

The DP can be explained physically by investigating the
phase of the sources. As depicted in Fig. 3, all points
on surface (AC), which is perpendicular to the angle of
investigation ϑ, have the same distance to a point in the
far-field at this angle. This means that the pressure in
the far-field at ϑ, can readily be calculated, if the phase
between the “virtual” sources on AC is known, by sum-
ming up the influence of all these sources as if in one
point.

Being that all lines leading to a point in the far-field
are parallel, each virtual source on the stretch AC corre-
sponds to one source on the plate AB, having firstly the
phase shift α, relative to point A, caused by the modal ex-
citation (local phase shift), and secondly the phase shift
β (see Fig. 3a)), due to the distance the wave travelled
in the fluid (chronological phase shift). The total phase
γ = α + β, where the phase α = kdy and β = k0χ, with
kd = dπ/` and χ = y sinϑ. The significant part of the
total normalized pressure in the far-field at ϑ is then:
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Figure 3: Plate and fluid-wave vibration with λd/λ0 = 2
and d = 7; b) s = 7, c) s = 5

Taking into account the second wave on the plate, prop-
agating in opposite direction, leads to the second sinc-
function as seen in Eq. 2. Depicted in Fig. 3b) is the
case of the main peak of DP, where the local phase α
and chronological phase β cancel each other out, making
all virtual sources on AC in phase. The total number of
half wavelengths λd/2 on the plate d = 7 and the num-
ber of half fluid wavelengths λ0/2 over BC s = 7. A
minimum of DP (Fig. 3c)) occurs, e.g., when d = 7 and
s = 5, or whenever |d−s| is a multiple of 2π, yet not zero,
which leads to the maximum; then all virtual sources on
AC have a counterpart with opposite phase, which cancel
each other out.

Analytical Cylinder (AC)
The normal velocity on the cylinder as seen in Fig. 1b),
is set up of the same modes as on the baffled plate, yet
angle dependent,
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The Ansatz for pressure and velocity is the following,
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where H
(2)
g (kr) cos(gϑ) is a multipole of order g. The

coefficients can be obtained analytically by exploiting or-
thogonality of the functions[3], leading to the directivity
pattern given as
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Fig. 4 shows the DP at a low frequency (λd = 0.03λ0),
for cosine-modes (upper row), sine-modes (lower row), of
even order (left column), and odd order (right column), of
the BP and AC for different radii. In all four mode cases
the radiation towards the rear increases very quickly for
decreasing cylinder size. Diffraction toward the rear is
a logical consequence of a cylinder of small radius, espe-
cially of rigid surface. The DP of the even cosine-mode
reacts the most to the reduction of size, changing from a
dipole characteristic to a monopole characteristic.
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Figure 4: Comparison of DP(ϑ) calculated for infinite cylin-
der or rather BP (thick, black curve) and finite cylinder with
radius b = 40, 10, 2.5, 1, 0.1λ0 at λd = 0.03λ0 for: a) cosine-
mode d = 6, b) cosine-mode d = 7, c) sine-mode d = 6,
d) sine-mode d = 7

For all sizes, the DP is zero at ϑ = 0 for the cases of
odd cosine- and even sine-mode, because the phase of
the sources on the cylinder is asymmetrical to the ori-
gin (γ(y) = −γ(−y)), and therefore cancel each other
out over the whole x-axis. In the case of the even cosine-
mode this cancellation only takes place in the far field for
the infinite cylinder, because then, all points of the vi-
brating surface have the same distance to the field point,
and the sources half of a wavelength apart can cancel each
other out. However by reducing the size of the cylinder,
curvature is added, also adding a new phase between the
sources. The phase distribution of the virtual sources on
a stretch perpendicular to the observed direction of radi-
ation ϑ = 0, is no more linearly distributed, but distorted
by the propagation through the fluid (chronological phase
shift).

Although the DP changes extremely through reduction
of the cylinder radius, while keeping λd/λ0 constant, the
modal radiation efficiency (RE), which is the ratio of ra-
diated power from the plate or cylinder mode, to the
power radiated from a section (length `), of an infinitely
long piston, which has the same mean square velocity,
hardly changes. Even at a radius of r = λ0, the energy
is only redirected.
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