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Introduction
The present study is part of an overall PhD work on noise
reduction. This work aims at achieving the most appropriate
passive control of any vibrating structure (cockpit, wagon)
treated with localised damping material through a
vibroacoustic modelling and a thorough understanding of the
dissipation mechanisms.

As a starting point we focused on a suspended free thin
aluminium plate partially covered with polymer patches
which can be considered as a generic configuration for
validating a numerical model.

The analysis of the patch location influence on the vibration
damping was based on a 3D viscoelastic incompressible
finite element formulation of the rubber together with a basic
3D formulation for the metal layers. Displacement and
pressure variables were uncoupled by means of a
perturbation technique. Based on a light fluid approximation
this method finally yielded a fluid-structure coupling that is
directly related to the acoustic damping.

In addition modal analysis with a non-contacting method
was achieved by means of a loudspeaker and a laser-beam
measurement apparatus.

Experimental set-up
As the numerical model clearly distinguishes the viscoelastic
and the acoustic damping components it was attempted to
reduce other damping sources for comparison purposes.

Figure 1: Modal analysis test bench

This is why a free aluminium 2mm-thick plate (35cm x
40cm) suspended by thin wires was studied for which the
boundary condition damping is assumed to be relatively
small.

The patches were double-layer 2mm-thick elastomer
/aluminium laminae which were bonded at different
locations. Four configurations were studied:

- The plate with no patch,

- A patch in the lower-left corner,

- A centred patch,

- Two patches in the same previous locations.

In a first experimental step structure modes were spotted
thanks to a white noise covering the 40 – 1000 Hz frequency
range.

Then the damping coefficient of each mode was measured
through a generated sine noise whose frequency was tuned
to the mode estimated frequency. After stopping the acoustic
excitation it was noticeable (by using a logarithm scale) that
the displacement signal at any point matched very well a
straight line. From this line we deduced a decay coefficient
which is related to a global modal damping.

Numerical aspect

Vibration Finite element model
A flexible 3D finite element code was developed to compute
the structure in-vacuum displacement. Quadratic
interpolation functions were used to correctly estimate the
shear stresses of the polymer.

The element was constituted of 27 nodes, 27 gaussian
integration points and had a specific incompressible
formulation for the rubber layer with four discontinuous
pressure points.

A solver capable of tackling more specifically sparse-
complex matrix eigenproblems was used.

A solving iterative procedure
Isotropic material data was provided in the form of a
complex Young modulus varying with the frequency. As the
stiffness matrix depended on the frequency, an iterative
technique was required.

Assuming the imaginary part of the modes eigenvalue was
relatively small compared to its real part and to the spacing
between the modes, the structure resonance modes were
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sought by inserting the material data at a fixed real
frequency which we supposed to be close to the resonance
mode’s.

The computed eigenvalue real part was then used for another
calculation. This strategy was repeatedly applied until good
convergence was obtained. Typically three iterations were
required to find the resonance’s pulsation satisfying the
equation (1).
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Fluid-structure loading
The differential system of equations that governs both the
displacement of the structure and the acoustic pressure was
transformed into one single integro-differential equation of
the displacement. This equation defines the frequency
dependent  eigenmodes un(M) and the eigenfrequencies ωn.
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The notation K(ω)un(M) expresses a scalar force value at
point M. Gω is the acoustic Green function of the spatial
configuration (infinite medium with a free finite plate) when
both M and P belong to the plate and was given by:
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Where g (M,P) is the free field Green function and µM (P) a
double layer potential at point P generated by a source
located in M.

By using the small parameter ε = 2ρf / hρs  (ratio of the fluid
to the metal density) and setting ω = ϖn the resonance modes
vn were given by :
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Assuming that ε << 1 (light fluid loading) each resonance
mode was sought as a perturbation series

vn = vn
0 + ε vn

1, ϖn = ϖn
0 + ε ϖn

1

This procedure yielded two sets of equations. The first one
characterises the in-vacuum vibration of the plate and was
resolved thanks to the FEM code.

Expanding the term vn
1  as a series of in-vacuum resonance

modes, the second set of equations led to the expression of
the frequency shift    (ϖn
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which depends on the modal radiation impedance βϖn.
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This term defines a fluid/structure coupling which is directly
related to the acoustic damping.

The numerical model eventually gave a viscoelastic damping
component, an acoustic damping term and the mode shifted
frequency.

Experimental/numerical comparison

Resonance frequencies
Numerical and experimental frequencies match fairly well.
Nevertheless numerical modes are overestimated. This is
probably due to the fact that βϖn is being computed via an
infinite medium Green function at the moment (quadruple
integration of the µ-term is not achieved yet): it is still not
able to sufficiently lower the pulsation real part.

Damping
For the time being acoustic damping results are not
satisfactory. It is still possible yet to compare an estimated
experimental viscoelastic damping to a numerical one by
substituting the plate’s damping (without patch) to the
damping of the other configurations (figure 2).

Figure 2:  Viscoelastic damping (left column: centred patch,
middle one: corner patch, right one: both).

We notice that an excellent estimation of the viscoelastic
damping is obtained.

Future work
Modelling of the fluid/structure coupling needs to be
terminated (the present baffled estimation is unsatisfactory).
Another case study with boundary-related damping is
forecasted as well as an optimization work of the patch
location for noise reduction purposes.
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