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10 rue Vauquelin, 75005 Paris, France. www.loa.espci.fr - email: julien.derosny@espci.fr

1 Introduction
Recently interest increases about the interaction of sound
inside a strong reverberant cavity filled with moving scat-
terers. In such a configuration, the motion of scatterers
induces fluctuations of the scattered and reverberated
sound field. In a theoretical point of view, a statisti-
cal model based on a diffusive field assumption has been
proposed[1]. It has been shown that the field’s autocor-
relation that quantify the field’s fluctuations is directly
linked to global parameters of the system such as the
scatterers speed, the cavity volume or the total elastic
cross section of the scatterers. Different experimental
works confirm this model[2, 1]. These researches lead to a
new technique: the Diffusive Reverberant Acoustic Wave
Spectroscopy (DRAWS). DRAWS has been successfully
applied in order to measure the elastic cross section or the
speed of fish swimming in a water tank[3, 1]. Recently
Conti et al.[4] have proposed an extension of DRAWS
in order to also measure the inelastic total cross section
(i.e., the scatterers absorption). The method has been
applied to human body[4]. In this paper, we propose
to confirm theoretically the Conti et al. method in the
framework of diffusive model. Experimental results ob-
tained inside a 1.5 liter reverberant water tank at 900kHz
central working frequency with spheres made of materi-
als (steel, gelatine, Ureol,...) of different absorptivity are
presented. Especially an original illustration of the ex-
tinction paradox is highlighted.

2 Theory
The time dependence of the pressure wave field, φ(t), can
be decomposed into an infinite sum of φn(t) wave fields.
Here φn(t) represents the wave field which is scattered n
times and t is the propagation time of the wave after its
emission from the source (at t = 0). Under the diffuse
field assumption, the mean squared fields obey to a set
of the balance equations between the different scattered
order field intensities:
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where τE is the elastic mean free time and τ ′
A the inelas-

tic one. Eq. 1 results from the following consideration:
within time dt, the elastic scattering of the (n−1)th order
scattered wave field feeds the nth order field. However at
the same time, nth order field decreases due to its elas-
tic scattering and its absorption. Obviously the feeding
term in Eq. 1 is not present for the field that is not scat-
tered (n = 0). The absorption is the sum of the inelastic
scattering and the cavity absorption (boundaries+water

dissipation), i.e. 1/τA′ = 1/τA + 1/τC . Moreover, it
has been shown under the dilute approximation that
τE = V/NσE in a reverberant cavity of a volume V filled
with N scatterers[1]. Straightforwardly, τA = V/NσAc
where σA is the scatterers’ inelastic cross section. We
assume that the different scattered field orders are decor-
related from one to one, therefore
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Two fields, φ(t) and φ′(t) recorded while the scatterer
positions have completely changed are only correlated
through the part of the field that is not scattered, i.e.
〈φ(t)φ′(t)〉 =

〈
φ2

0(t)
〉
. Using Eq. 1, it comes
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Moreover summing equations 1 for all n yields:
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φC corresponds to the reverberated field recorded with-
out scatterers. Finally it comes from the two previous
equations: 〈
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Hence the experimental measure of
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,
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and
〈φ(t)φ′(t)〉 gives an estimate of scatterers’ elastic and in-
elastic cross sections σE and σA by the mean of Eqs. (2)
and (5).

3 Experiments
The one sphere experimental setup is shown in Fig. 1.
A generator emits a few 900kHz periods. Synchronously,

Figure 1: Experimental set-up.

a digital scope records the scattered-reverberated pres-
sure field on an hydrophone. A parallel port leads to
transfer the pressure response into a computer. This re-
sponse is then recorded on the hard drive of a computer
by the way of the parallel port. The acquisition is re-
peated 200 times, between each acquisition the ball po-
sition is changed. From the bank of responses,

〈
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〉



and 〈φ(t)φ′(t)〉 are estimated. As for φC , it is obtained
from the record of the pressure field response with no
ball in the tank. In Fig. 2 are plotted the two ratios
(Eqs. (2) and (5)) with respect to the propagation time.
Plots are obtained from two 19mm-diameter spheres: one
made of Ureol and the other one made of steel. From lin-
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Figure 2: Experimental mean intensity ratio,〈
φ2(t)

〉
/
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(squares) and normalized correlation,

〈φ(t)φ′(t)〉 /
〈
φ2(t)

〉
(triangles). Straight lines represents

least-square linear fits. Plots (a) and (b) are obtained with
19mm diameter spheres made of Ureol and stainless steel,
respectively.

ear fits, σE and σA are deduced. Experiments are also
performed with plasticine and gelatin materials. The ex-
perimental cross-sections are presented on Table 1. They

Steel Ureol Plasticine Gelatin
σE σA σE σA σE σA σE σA

E1 498 11 251 214 302 206 350 38

E2 543 20 256 214 296 203 311 23

E3 551 17 252 207 315 204 313 24

Th 581 0 282 235 x x x x

Table 1: Table of tree measures (E1, E2 and E3) of σE

and σA expressed in mm2 with four materials. The row Th
corresponds to the theoretical values when material properties
are known.

are compared to their theoretical values[5] when acoustic
properties of materials are known.

4 Discussion
At 900kHz, the wavelength equals 1.66mm in water.
Hence a 19mm diameter ball is large compare to the
wavelength. In such a case, one may assume that the
ray theory is valid. The impedance of steel is about 40
times higher than the water one. Hence a steel-ball can
be seen as a nearly perfectly reflecting sphere. Under the

ray theory assumption, the elastic cross section of such a
scatterer would equal its geometrical cross section (πR2

where R is the sphere radius). For our 19mm diameter
sphere, the geometric cross-section equals 283mm2. Nev-
ertheless the experimental value for σE (see Table 1) is
about twice larger than the geometrical one. This behav-
ior is characteristic of the so-called “extinction paradox.”
Contrary to the specular reflection on the scatterer, the
ray theory cannot model the forward-diffraction on the
edge of the scatterer. Surprisingly the specular-reflection
contribution and the diffraction contribution to the elas-
tic cross section are equal. This has been theoreti-
cally justified. Here we give an experimental illustra-
tion. To this end, we exploit the results obtained with
the 19mm-diameter ball made of Ureol (see Table 1).
The impedance of Ureol is almost equal to water one.
Moreover the intrinsic attenuation of Ureol is extremely
strong (240dB/m/MHz). Therefore an Ureol ball acts
as a nearly perfect absorbing scatterer. In such a case, all
the “rays” previously reflected penetrate in the ball and
are absorbed. Now rays contribute to the inelastic scat-
tering whereas the diffraction process remains unchanged
and still participate to the elastic cross-section. There-
fore σE and σA would be almost equal to the geometric
total cross-section, i.e. 283mm2. This is roughly experi-
mentally observed, the difference originates the imperfect
absorption, the slight mismatch of impedance between
water and Ureol and finally the wavelength that is not
infinitely small compare to the ball radius.

5 Conclusion
In conclusion, DRAWS is an original and simple tech-
nique in order to measure both the elastic and inelastic
total cross sections. An experimental validation has been
shown within the framework of the extinction paradox.
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