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Anisotropic soil model with horizontal stratification 
In a former paper1 a model for orthotropic and anisotropic material 
parameters in horizontally stratified soils is presented. The ho-
mogenous solution for the different wave types in a layer is derived 
using Fourier transforms about time t and all orthogonal coordi-
nates in space. Axis x and y are defined as coordinates in the hori-
zontal plane and z heads towards depth. The characteristic equa-
tions defining the relation between frequency and wave numbers 
are derived using an equilibrium of stresses based on the trans-
formed relations defining the relation between stress and displace-
ments. In the transformed domain the derivative relations between 
displacements and strains are reduced to normal equations and 
therefore the final relations are derived using matrix algebra. The 
flexibility matrix F has to be inverted to derive the relation between 
stresses and strains before this matrix is multiplied by the matrix D 
of the strain displacement relations in the transformed domain. The 
singular values of the matrix for equilibrium of stresses are used to 
derive the vertical wave number kz for any combination of angular 
frequency ω and horizontal wave numbers kx and ky. The eigenvec-
tors of the matrix define the direction and type of the waves. These 
eigenvectors are used to set up the equilibrium of displacements at 
the interfaces of the layers. The equilibrium of stresses at the inter-
faces needs the stress eigenvectors. These vectors are derived by 
putting the singular values into the displacement stress relationship 
and the displacement relations and applying the displacement ei-
genvectors. Application of Dirac functions depending on the eigen-
values allows the definition of generalized functions for the waves 
in the fully transformed domain. The eigenvectors of displacements 
and stresses are multiplied by an unknown constant and a Dirac 
function depending on the difference of the wave number kz and the 
eigenvalues kz,i belonging to the eigenvectors Ψi. This function is 
transformed back about the vertical axis. The results are exponen-
tial functions depending on the eigenvalues kz,i, the imaginary unit 
and depth z  scaled with the eigenvectors and unknown constants. 
The exponential functions are evaluated numerically at the depths 
of the interfaces. The resulting equations are used to substitute the 
unknown internal constants by the displacements reducing the 
number of unknowns and simplifying the global matrix analogous 
to the finite element method. Using a singular frequency and dou-
ble back transform about the vertical axis and time, the direction of 
waves in a half space is derived. Waves that propagate into the 
undesired direction are eliminated. Using Sommerfeld´s radiation 
condition, only waves propagating into depth fulfill causality.  

Green´s function 
The model so far is based on the homogenous solution and only 
allows for loads at the interfaces. To derive a complete set of 
Green´s functions for a stratified medium, a unit Dirac stress load is 
needed in arbitrary depth z facing into one of the  directions x, y or 
z. The results are Green´s functions of stresses and displacements 
for dipoles. Monopole solutions needed for the Burton Miller 
method are added using the same procedure. The load is applied in 
an arbitrary depth z inserting an additional interface inside the 

loaded layer. This method is simple, but needs a new solution of the 
global matrix for every depth of the load. A procedure is presented 
that maps the boundary conditions from the internal interface to the 
interface at the top of the loaded layer using the same model for all 
Green´s functions. Only the global load vector describing the loads 
at the interfaces has to be evaluated and backward substitution is 
needed to determine the unknown displacements at the interfaces. 
In the calculation of internal stresses and displacements for a se-
lected load, an additional particular part has to be added within the 
loaded layer from the top down to the depth of the load. The trans-
formation from a load position in the layer to the top of the layer 
leads to a load and a gap in the displacement that is converted into 
an additional load using the stiffness matrix of the element matrix 
of the layer. 

Loads at an internal interface 
The model is invariant with respect to shifts in the horizontal direc-
tions. Therefore it is assumed that the impact acts at the origin x=0 
and y=0. In the vertical direction the impact is applied in depth zp 
within a layer of height d. A unit impact load p – is assumed to act 
into one of the three directions x, y or z. 
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The Dirac function is Fourier transformed to unit one. Instead of 
one singular position the complete spectrum depending on two 
wave-numbers kx and ky and the angular frequency ω is needed. 
Transforming local effects like impacts seems to be a bad idea, but 
the complete spectrum is already needed in the homogenous case, 
and, if the particular impact responses can be added as an additional 
load vector, only a small number of additional calculations is 
needed. Advantages are the decoupling of the equations for every 
wave number and angular frequency giving small systems of equa-
tions and allowing for parallelization. Communication is only 
needed in the pre- and post process. However, only the homoge-
nous solution that does not allow for a load within the layer is given 
in the basic formulation. If we insert an additional interface in the 
depth of the load, the load acts at the interface and only the ho-
mogenous solutions are needed. 

 

Fig.1: Additional interface and definition of parameters and stresses 

To simplify the expressions, the vertical coordinates of the two 
layers start at the internal interface with the same global direction. 
In layer A the upper original interface is at the position za=–dp. At 
the lower layer B the lower interface is at position zb=d-dp. With 
these assumptions the equations at the internal interface are simpli-
fied. 
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eq. 2

The matrices D (strain displacement relationship, transformed 
differential matrix) and F (strain stress relationship, flexibility 
matrix) and the singular vectors Ψi  are identical in both layers 
because the layers consist of the same material. Only those three 
components of the six stresses which act on the horizontal interface 
are included. Compatibility of displacements at the interface and 
equivalence of stresses allows the reduction of the number of un-
knowns from 12 to 6 as it would have been without the additional 
interface. The equilibrium of stresses are non homogenous equa-
tions. 
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Both divisions have identical material parameters. For this reason 
the matrices transforming the unknown scales in the upper and 
lower layer are identical. 
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 eq. 4

The unknowns of the homogenous part of the upper Ahom layer are 
identical to the unknowns B in the lower layer. Therefore the two 
layers are melting to one layer again. This effect simplifies the 
approach because the system equations are from now on independ-
ent from the load position.  
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eq. 5

The particular solution is calculated at the upper boundary. The 
indexed brackets []i  are used in Eq. 5 as a symbol for the extraction 
of the indexed component from the vector in the brackets. It be-
comes visible that stresses and displacements are not homogenous 
at the upper interface, projecting the internal load to that interface. 
Also, the particular parts of the equations belonging to the upper 
section of the original layer have to be added to the solution in the 
post process whenever stresses or displacements in the upper sec-
tion are evaluated. The gap in the homogenous displacements at the 
upper interface caused by the non-zero vector side of the matrix 
equation is compensated by the particular part of the displacement 
function in the upper layer. The unknowns Bi are substituted by a 

set of unknowns Ci that belong to an origin of the vertical coordi-
nate starting in the middle of the layer according to the definition 
for unloaded layers. For the numerical implementation, the parts in 
the brackets and outside the brackets are calculated separately and 
combined for different load cases and depths because the parts in 
the brackets depend only on the load case and the factors outside 
the bracket on the specific depth.  

Using a vector C of the unknowns and a vector P of the particular 
parts of the equations, the homogenous and particular parts of the 
equation are separated one from each other. 
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eq. 6

The homogenous equation is identical with the equation for an 
unloaded layer. The particular stresses define a global load vector. 
The displacements are weighted with the local stiffness matrix and 
the results are added to the load vector. This method needs some 
additional operations using the elemental stiffness matrix of the 
layer defining the stress displacement relations at the upper and 
lower boundary, but the degrees of freedom are reduced. Only the 
three homogenous displacements at the interface are given as un-
knowns instead of six coefficients in C. The post process for sev-
eral loads remains nearly unchanged at the interface between 
unloaded layer 1 and loaded layer 2. Eq. 7 is derived. 

[ ] [ ]
upartupartuu

d

u
dddu

d

d
uduu

dddu

uduu

,,2,,2,2

hom,,1

hom,,1
,1,1

hom,,2

hom,,1
,2,2

1

ˆˆˆ
ˆ
ˆˆˆ

ˆ
ˆˆˆ

ˆˆ
ˆˆˆ

σuK
u
u

KK
u
u

KK

KK
KKΘK

−=

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=Ξ= −

 eq. 7

Example, validation of the model, acknowledgement 
Fig.2 presents the surface response of a stiff layer with 0.2 m depth 
on a soft subgrade. The load is an impact in vertical direction. The 
figures present the decay of the magnitude along the surface for an 
angular frequency ω=10000 rad/sec. No difference to the classical 
model with an additional interface at the load was detected. The 
project is supported by the Austrian Science Fund FWF Project 
P16224-NO7. 
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Fig.2: Top displacement of two layers on a half space with load at 
the internal interface (homogenous model)  

                                                           
1 H. Waubke, P. Balasz: Verwendung der zeitlichen Rücktransformation zur 

Berücksichtigung der Kausalität in Spektren mehrdimen-
sionaler Fourier Transformationen, DAGA 2003, No.1498 


