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Introduction 
Rough surfaces have been the subject of many studies 
involving the propagation of Rayleigh type waves [1-3]. For 
applications involving internal interfaces guided waves, 
guided waves such as Lamb waves are more useful. In this 
paper, the propagation of Lamb waves in an anisotropic plate 
with a randomly rough surface on one side, the other side 
being considered as the reference side, is studied. A 3D 
model is developed for an anisotropic plate in vacuum, 
characterized by its thickness d, its density ρ and its (6x6) 
elastic constant matrix ( )αβc . The boundary surface 

)x,x(h)x,x(Hx 212
d213 +−==  has a weak variation 

)x,x(h 21  about the plane 2dx 3 −=  (see Fig. 1). The 
slopes 11 xh'h ∂∂=  and 22 xh'h ∂∂=  are also assumed to be 
small. A perturbation method is presented in order to express 
the dispersion equation of the rough plate as a sum of the 
dispersion equation of the plate with roughless surfaces and 
of a perturbation. 

 
Figure 1: Geometry of the problem 

Theoretical model 

Change of basis 
Note ji

~σ  and lkσ  the coefficients of the stress tensor 

expressed respectively in the local basis ( )321 x~,x~,x~
~ rrr
=B  

(linked to each point ( )xM
r of the surface )x,x(Hx 213 = , 

3x~
r

 being the normal vector to the upper surface) and in the 
cartesian basis. ji

~σ  and lkσ  are related by the tensor 
formula 
 lkljkiji aa~ σ=σ   , (1) 
where kia  are the coefficients of the change-of-basis matrix 

for B  to B~ , which depend on 1'h  and 2'h . Using Eq. (1) 
permits to write the following matricial relation 
 ( ) ( )33 xJx~ σ=σ  , (2) 

where J is a (3x6) matrix, ( ) ( )T
1323333

~,~,~x~ σσσ=σ  and 

( ) ( )T
1213233322113 ,,,,,x σσσσσσ=σ  are respectively the 

(3x1) column vector made up of the three components of the 
stress vector linked to the normal vector 3x~

r
 to the upper 

surface and the (6x1) column vector made up of the six 
components of the stress tensor, T denoting the transpose 
operation.  
By introducing the slowness vector ( )m

rη  of the wave ( )η  in 
the plate, the particular displacement vector can be written as 

 ( ) ( ) ( ) ( )( )∑
=η

−⋅ω−ηη η
=

6

1

txmiePat;xu
rrrrr , (3) 

where ( )aη  and ( )P
rη  are respectively the displacement 

amplitude and the polarisation vector of the wave ( )η , and 
ω  is the angular frequency of the waves. 
The writing of Hooke's law [4] allows to express ( )3xσ  as a 
function of the (6x1) column vector A  made up of the six 
displacement amplitudes ( )aη  : 
 ( ) ( )AH 33 xDx =σ , (4) 

omitting the factor 
( ) ( )( )txmxmi 21ei −⋅+⋅ω− ηη

ω−
rrrr

. The (6x6) 
matrix D only depends of the elastic constants αβc , of the 

slowness vector ( )m
rη  and of the polarisation vector ( )P

rη . 
The (6x6) matrix ( )3xH  is a diagonal matrix  

 ( ) ( )






=

ηω− 33 xmi
3 ediagxH  , (5) 

where ( )
3mη  is the projection on the 3x -axis of ( )m

rη . 
Substituting Eq. (4) into Eq. (2) leads to 
 ( ) ( )AH 33 xDJx~ =σ . (6) 

Second-order expansion 
A second-order expansion of all the coefficients of the 
change-of-basis matrix for B  to B~  permits to express the 
(3x6) matrix J as a linear combination of six matrices : 
 

22112121 xx
2
2xx

2
1xx21x2x10 J'hJ'hJ'h'hJ'hJ'hJJ +++++≈  (7) 

Using Eq. (6), the stress vector ( )3x~σ  is thus also expanded 
at a second-order in 1'h  and 2'h .  
A second-order expansion in h of the exponential 
propagation factors of the diagonal matrix ( )3xH  about 

2
d3x −=  enables to express the matrix ( )3xH  as a linear 

combination of three matrices : 
 ( ) −−− ++≈+− 2

2
102

d hhh HHHH . (8) 
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Substituting Eqs. (7) and (8) into Eq. (6) leads to a second-
order expansion of the stress vector ( )3x~σ  at the upper 
surface. This expansion is the sum of eighteen matrices, the 
zero-order term being −

00 DJ H . 

Boundary conditions 
As the plate is in vacuum, the stress vector linked to the 
normal of the interfaces has to be zero : 

(9)  

and 

( )
( ) .xat0ˆ

,)x,x(Hxat0h~
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==σ
==+−σ

 
(10) 

( ) ( )T
1323333 ,,xˆ σσσ=σ  is the (3x1) column vector made up 

of the three components of the stress vector linked to the 
normal vector 3x

r
 to the lower surface : 

 ( ) ( )AH 303 xDJxˆ =σ . (11) 
The boundary conditions (9) and (10) lead to a 6-th order 
homogeneous system of equations : 
 0M =A  . (12) 
M is a (6x6) matrix which is the sum of eighteen matrices 
and which can be expressed as follows 
 ( )MMIMMMM 1

000 δ+=δ+≈ −  ,  (13) 

where 1
0M −  is the inverse of 0M  and I is the identity matrix. 

The matrix 0M  corresponds to the homogeneous system of 
equations, written for roughless surfaces and is given by : 
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H  with ( )2
d

30 x ==+ HH . (14) 

The homogeneous system (12) has non zero solution only if 
the determinant Mdet  of the matrix M is equal to 
zero,leading to the dispersion equation for Lamb modes, 
which can be written in the form 
 det M = F(k1,ω) = 0, (15) 
where k1 is the projection of the wave number vector on the 
x1-axis, its real and imaginary parts being respectively noted 
k'1 and k"1. Eq. (15) can be expressed as follows 
 ( ) ( ) ( ) 0,kF,kF,kF 1101 =ωδ+ω≈ω  . (16) 
It can be noticed that the cancellation of the function 
F0(k1,ω) = det M0 corresponds to the dispersion equation for 
Lamb modes in a plate with plane surfaces. In this case, for a 
given pulsation ω , the solution is real and is denoted k0. 
Thus, it can be assumed that, for a given pulsation ω , the 
solution k1 of Eq. (15) is of the form : 
 k1 = k0 + δ k1 . (17) 
The roughness of the stress-free boundary induces a small 
complex perturbation δ k1 of the solution of the dispersion 
relation, the real and imaginary parts of which are related 
respectively to the shift frequency and to the attenuation of 
the wave. Two mechanisms contribute to the decay of a 
Lamb mode: its decay into bulk elastic waves and its decay 
into other Lamb modes, with an energy transfer between 
modes. 

Numerical and experimental results 
Experimental and numerical studies have been done on an 
rough shot blasted glass plate. The plate is isotropic but the 
roughness needs a 3D description. The profile of the surface 
is described by its statistical properties : its mean value Ra 
and the mean square deviation of the surface from the 

flatness Rq. For a random profile H(x1,x2), the Lamb wave is 
sensitive to a kind of "average" parameters ( <<     >> ) of 
the surface, involved in the dispersion equation (15) or (16) : 

>>=<<α 11 'h , >>=<<α 22 'h , >>=<<β )x,x(h 21  , 
and γ = <<h2(x1,x2)>>. These parameters depend on the 
Lamb mode and on the spatial wavelength Λ  (given by the 
Power Spectrum Density of the surface S(x1,x2)) corres-
ponding to the roughness profile. As a first approach, α1, α2, 
and γ can be identified to Λ≅α≅α a21 R4  and 2

qR≅γ .  
The roughness has a weak effect on the phase velocities 
(related to k'1). On the other hand, though the wave numbers 
k1 are real when the plate is smooth (their imaginary part is 
zero), the wave numbers become complex when the surface 
is rough (see Fig. 2). As a consequence, the roughness has a 
influence mainly on the attenuation (related to k"1). 
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Figure 2: Dispersion curves in the complex plane of k1d for 
a shot blasted glass plate ; Ra = 23.3 µm, Rq = 29.8 µm, 

mm546.0=Λ . 
Experimental [5] and numerical results are in very good 
agreement for mode S1 (k"1d = 0.025 in both cases, with an 
improvement with respect to a 2D model [6]) but are less 
good for other modes : the influence of the spatial 
wavelengths, through the PDS, has to be taken into account. 
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