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Introduction
Outdoor sound propagation is influenced by numerous
different factors which should be implemented in a real-
istic simulation model. In acoustics, for infinite domains
in particular, the Boundary Element Method (BEM) has
established as a suitable and powerful numerical method.
Hence, it is shown how important effects can be included
in a BEM model. The focus is on damping in the air, on
the effect of a mean flow, and on refraction, respectively.

Damping in the air
Beside geometric damping, the most important reason
for transmission loss in outdoor sound propagation is the
absorption in the air. However, inhomogeneous phenom-
ena like turbulence or fog are not subject to investiga-
tion here. Considering absorption in the homogeneous
domain leads to a modified Helmholtz equation [1]

∇2φ+ k̄2φ = a (1)

with a complex wave number k = k(1 + iµ), where
k = ω/c is the original wave number and µ is the ab-
sorption coefficient. It can be given for different damping
causes: Internal friction, thermal conduction, and molec-
ular damping where the last dominates the others. Val-
ues for µ depending on frequency, relative humidity, and
temperature can be taken from standard norms, e.g. [2].
For the implementation in the BEM model one simply
has to replace k by k in the fundamental solution.

Studies show a transmission loss caused by molecu-
lar damping which is linearly increasing with distance
[dB/m], for spherical as well as for planar waves. The
influence of molecular absorption compared to geometric
damping increases with frequency and furthermore de-
pends strongly on humidity and temperature. In outdoor
sound propagation considering long distances and/or
higher frequencies, molecular damping easily reaches or
overcomes the effect of geometrical damping. Hence, it
is important to be considered for these cases.

Mean flow
The first step to include the effect of wind may be con-
sidering a constant mean flow in the domain, e.g., in z-
direction. The mean flow velocity is vz = const and the
Mach number is Mz = vz/c0, respectively. The standard
Helmholtz equation changes into

∇2φ+ k2φ− 2ikMz
∂φ
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= a, (2)

as shown in detail in [3]. The relation between pressure
p and velocity potential φ becomes
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The second terms in eqn.(3) and (4) include the mean
flow effect and vanish in case of a medium at rest. It
has to be noticed that in case of pressure formulation the
Neumann boundary condition (pressure flux) will change
compared to the standard no-flow case, e.g., considering
an acoustically rigid boundary leads to

∂φ

∂n
= 0 → ∂p

∂n
= ρvz

∂2φ

∂z∂n
6= 0. (5)

To overcome this difficulty, the problem has to be solved
in potential formulation, before the pressure can be com-
puted with eqn.(3) at the points of interest.

One way to solve the modified eqn.(2) is to apply the
so-called Prandtl-Glauert transformation [4]. With this
transformation, eqn. (2) passes back into the standard
Helmholtz equation for which solving the integral equa-
tion is well-known and implemented in numerous BEM
programs. This transformation affects the coordinate z
in direction of the mean flow, the wave number k as well
as the field quantities φ and ∂φ/∂n or pressure p and flux
∂p/∂n, respectively.

An example for a dipole source in a mean flow of Ma=0.5
in positive z-direction is shown in figure 1. It is obvious
that the pressure tends to be higher on the upwind (left)
side for the constant flow. This tendency does not change
taking monopole sources or different frequencies. So, the
effect of increasing pressure for downwind situation can
not be shown with a constant wind field. This effect must
refer to refraction (see next section).

Figure 1: Characteristic pressure field around a dipole source
in a mean flow (from left), k=ω

c
=1, Ma=0.5.

An alternative way to solve eqn.(2) is given in [4] where
a fundamental solution is derived for the mean flow case.



However, this leads to an integral equation which con-
tains terms of ∂φ/∂z additionally to the considered field
quantity φ and its derivation ∂φ/∂n normal to the bound-
ary.

Refraction
In outdoor sound propagation, refraction is caused by
a gradient in the temperature or wind speed profile, as
both affect the efficient sound speed profile. Including
refraction in a BEM model is a challenging task because
the method is usually restricted to deal with homoge-
neous domains. Two approaches are investigated in the
following to include this effect in a BEM computation.

One possibility is describing a layered atmosphere by ho-
mogeneous substructures with different material parame-
ters such as mean flow or temperature. The substructure
technique is a common method to couple two separate do-
mains or, vice versa, to split one domain in parts. For the
following example, a three-layer atmosphere was modeled
approximating the wind speed profile as follows: v1=0ms
in the bottom layer (0m<z<2m), v2=5ms for 2m<z<4m
and v3=10ms above. The infinite ground is assumed to
be acoustically rigid and a monopole source is placed
at (xs=0, zs=3m) with f=100Hz. Figure 2 shows the
computed relative sound pressure level for the described
layered atmosphere as well as for the homogeneous at-
mosphere at rest. The rel. SPL is defined as the level
difference between a receiver point (hr=1.3m) and a ref-
erence point 1m from the source in free space. It can be
seen that refraction at the layer interfaces has a signifi-
cant influence. It seems to increase the SPL downwind
compared to upwind. Hence, the layered atmosphere ap-
proximation shows the same effect as known from out-
door measurements.

Figure 2: Rel. SPL for monopole source (hs=3m, f=100Hz)
over rigid ground, receiver height hr=1.3m: Layered (wind
from left) and homogeneous atmosphere (v=0).

Another possibility to overcome this restriction of a ho-
mogeneous domain is to use the analogy between a re-
fracting medium over a flat terrain and a homogeneous
medium over a curved terrain as studied in [5].

The medium is assumed to be stratified and to have the
sound speed profile c(y) = c0e

y/Rc , where y denotes the

height over the ground and Rc is the radius of curva-
ture of the sound rays. For y << Rc this approximates
a sound speed which is linearly increasing with height.
For this case, the sound rays, travelling from a source
to a receiver at the same height, will follow curves with
constant radius Rc. Introducing a conformal coordinate
transformation, as shown in [5], will then curve the flat
terrain into a cylindrical surface and refer the problem
to the homogeneous case.

As a sample, an acoustically rigid ground is considered
with a rigid barrier (hb=1.7m, xb=8m). A monopole
source (hs=1m, f=100Hz) is placed at xs=0. Figure 3
shows the computed transmission loss for both upwards
and downwards refracting atmosphere for Rc=300m. Re-
ceiver points are at hr=1m. It can be seen that refraction
nearly does not effect the area in front of the barrier, but
has increasing influence for increasing distance from the
source. It has to be noticed that the approximation of a
constant gradient of sound speed holds for a linear tem-
perature profile, but for simulating wind it can be just
a first estimation because the barrier will influence the
wind field in the neighbourhood.

Figure 3: Rel. SPL for monopole source (hs=1m, f=100Hz)
with barrier (hb=1.7m), receiver height hr=1m: Influence of
upwards and downwards refracting atmosphere (Rc=±300m).
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