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Introduction
The stability theory has been a successful method for
the understanding of supersonic jet-noise generation [8].
However, in the case of subsonic jets, noise mechanisms
are still debated. Hence, the acoustical emission by vor-
tex pairing [2] conflicts with the theory of superdirectiv-
ity [5] [4]. In this model, the acoustical source is supposed
to result of an instability of global mode type [4] [3] .

In the present work, a global stability analysis is leaded
on an axisymmetric jet of speed Ũj with a coflow of ve-

locity Ũ∞, see figure 1. Since the shear-layer of the jet
thickens slightly in the streamwise direction, its stabil-
ity characteristics vary from point to point along the x
axis. The local stability of every radial velocity profile
is thus calculated. The downstream evolution of fluctua-
tions is then predicted on a large axial domain thanks to
global stability criteria [6]. A comparison is made with
experimental results [7].

Formulation of the problem

The mean velocity profile is described in (r̃, x̃, φ) cylin-
drical coordinates by:

Ũ(r̃, x̃, φ) = 2Ũm

[

1 − Ru tanh

(

D̃

4δ̃θ(x̃)

(

2r̃

D̃
−

D̃

2r̃

))]

with D̃ the jet diameter, Ũm = (Ũj + Ũ∞)/2 the mean

flow velocity, Ru = (Ũj − Ũ∞)/(Ũj + Ũ∞) and δ̃θ the mo-
mentum thickness of the shear layer. The mean pressure
p̃0, the mean density ρ̃0, 2Ũm and D̃ are chosen as refer-
ence quantities. In the next, non-dimensional variables
will be written without the sign ˜ .
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Figure 1: Mean axial velocity profile.

With the aim in view to predict the linear stability of
such a flow, an inviscid and incompressible perturbation
is added to every involved mean variable. For example,
the pressure p is searched as p = 1 + pf (r, x, φ, t) with
|pf | << 1.

The long time evolution of pf defines the stable or unsta-
ble behavior of the jet. It is searched as a normal mode
form exp(−iωt) with ω complex. If the imaginary part
of ω, ωi, is strictly positive (resp. strictly negative), then
the fluctuation grows exponentially with time (resp. de-
creases) and the flow is said to be unstable (resp. stable)
for this perturbation. The azimuthal dependence of pf

is calculated for each azimuthal mode exp(inφ), with n
an integer. Moreover, if the flow were invariant in the
streamwise direction, then an evolution of normal mode
form exp(ik(ω, n)x) would be expected. Nevertheless,
the wave number k must be here evaluated for each di-
verging velocity profile. In order to decouple the wavy
evolution of the fluctuation with the dependence of k on
x, we suppose that the thickening of the shear layer is
slow. Precisely : dδθ

dx
∼ ε << 1

The variable X = εx scales with the slow evolution of the
shear layer. Hence, k = k(ω, n,X). Finally, pf is sought
as :

pf = g(r,X) exp

(

inφ − iωt + i

∫ x

0

k(X ′ = εx′, ω, n)dx′

)

It is then possible to write a dispersion equation of
Rayleigh type at the leading order 0(ε0) with the only
variable pf :

D

(

∂

∂r
, ω, k;n, δθ(X), Ru

)

g = 0 (1)

Local stability
The dispersion equation (1) is solved for fixed parameters
n, Ru and at each axial position by imposing δθ. A shoot-
ing method is employed : (1) is integrated from r = 0
to the coflow domain where g must satisfy a condition of
exponential decrease.

If ω is fixed, then two spatial branches of solutions k+(ω)
and k−(ω) may exist. These solutions correspond to
waves that develop upstream and downstream respec-
tively of the considered axial position X [1]. Following
the global stability theory, we are interested in the ab-
solute mode (ω0, k0) defined as a pinching point of k+

and k− branches : k+(ω0) = k−(ω0) = k0. The group
velocity associated to this wave vanishes and its stable
behavior is predicted by the sign of ω0i.

The figure 2 presents the calculated evolution of the tem-
poral amplification rate ω0i with δθ(X) for different pa-
rameters Ru and n. A good agreement is found with
Cooper & Crighton’s [3] results for n = 0 and Ru = 1
corresponding to the free jet case for which Ũ∞ = 0. This
flow is absolutely stable at every axial position. As Ru is



increased, ω0i grows and an absolutely unstable domain
expands for Ru > 1.191, that is Ũ∞/Ũj < −0.16, and
n = 0. The first absolute helical mode n = 1 is unstable
for Ru > 1.388. Furthermore, ω0i(X,Ru, n) decreases
with increasing n at least for the presented δθ and Ru

variations and n ≤ 3. The axisymmetric mode is the less
stable absolute instability.
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Figure 2: Evolution with δθ(X) of the temporal growth rate
of the absolute mode.
— : n = 0 ;- - - : n = 1 ; (1) : Ru = 1 ; (2) : Ru = 1.191 ;
(3) : Ru = 1.388 ; (4) : Ru = 1.5 ;
* Cooper & Crighton’s analytical results [3].

Global stability

A global mode is a self-fluctuation of a large flow domain,
either open (−∞ < X < +∞) or half-open (0 < X <
+∞), and whose pulsation ωg is independent of X. It
is of only hydrodynamic origin. The flow resonance does
not involve an acoustic feedback through a pressure wave
which could be radiated by the flow.

For a flow be globally unstable, a large enough absolutely
unstable X-domain must prevail. Hence, a free cold jet,
Ru = 1, is globally stable.

A jet flow may be considered as a half-open domain that
is bounded by a nozzle located in X = 0. In this case,
the global pulsation ωg is estimated by ωg = ω0(X =
0) + O(ε0) [6]. The figure (3) presents the neutral sta-
bility curve ω0i(δθ, Ru) = 0 (a) and the corresponding
Strouhal number StD̃ = ω0r/(2π) (b). We report as well
Strykowski & Niccum’s experimental data δθ(Ru) mea-
sured close to the nozzle exit [7]. As Ru < 1.35, the
jet flow is absolutely stable in the vicinity of the noz-
zle exit and no self-sustained global mode rises. This
threshold value agrees well with the critical Ru = 1.32
observed by Strykowski & Niccum. For supercritical Ru,
these authors notice self-oscillations of the shear layer at
a discrete frequency which could be attributed to the in-
stability of a global mode type. Hence, a low frequency
is observed in their hot-wire spectra, see figure 8 of the
paper. The corresponding Strouhal number is in good
agreement with the predicted value StD = 0.68 but no
quantitative comparison is available.

Conclusion

A stability study was dealt and the process leading to
the rise of a global mode in an axisymmetric jet was en-
lightened. The acoustical emission of such an instability
is the subject of a future work.
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Figure 3: (a) Absolute stability curve ω0i(δθ, Ru) = 0 of
the axisymmetric mode n = 0. . . . : δθ(Ru) at the initial
development of the jet shear layer studied by Strykowski &
Niccum [7].
(b) Corresponding Strouhal number St

D̃
= ω0r/(2π).
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