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Introduction
A number of numerical methods such as statistical en-
ergy analysis, energy finite element method and smooth
energy methods exist for the prediction of high-frequency
structure-borne sound. In all these methods, the trans-
mission across structural junctions is characterised by
power transmission coefficients. Thus, the results of
the calculation depends on the exact prediction of these
coefficients. ”Simple” formulas[2] are often not suffi-
cient, especially for complex junctions. The finite ele-
ment method may solve the problem, but only at the
cost of a large computational overhead. Below, a generic
approach[1] for the calculation of power transmission co-
efficients is presented.

Generic approach
The approach taken is presented here on the basis of
an electro-mechanical analogy for reasons of simplicity
and clarity. Consider a junction of N electrical wave
guides (Fig. 1), defined by their wave admittance G. A
wave incident to the junction on wave guide m has an
associated current imi. Kirchhoffs theorem states that
the sum of this current and that of the transmitted waves
int must vanish: ∑

int = −imi (1)

The reformulation using the admittances of the wave
guides and the voltage umi of the incident wave yields
an equation ∑

Gnuc = 2Gmumi, (2)

which can be solved for the junction voltage uc. It is then
straightforward to calculate the transmission coefficients
τmn as ratio of the powers carried by the transmitted and
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Figure 1: A junction of electrical waveguides

the incident wave:

τmn =
1
2Re (u∗cGnuc)

1
2Re (u∗miGmumi)

, n 6= m. (3)

For m = n, uc has to replaced by uc − umi.

This approach can be extended for multiple degrees of
freedom (DOF) and wave guides in the three-dimensional
space. To this end, the analogy relations i ⇔ F , u ⇔ v,
G ⇔ Z have to be applied first. Then, scalar quantities
have to be replaced by vector quantities, e.g. v ⇔ v, that
account for multiple DOFs. Finally, to incorporate the
three dimensions, a co-ordinate transformation to global
co-ordinates by matrix K has to be used. Equation (2)
reads then:∑ (

KZnKT
)
vc = 2diag (Zm)vmi,wt (4)

This system of equations has as many unknowns as DOF
are considered and must be solved for the vector of junc-
tion velocities.

A mechanical wave guide may bear different types of
waves, e.g. bending, compression and shear waves.
Therefore, instead of umi the vector of incident wave ve-
locities vmi,wt has to be applied, which is different for
each wave type.

The approach in equation (4) is sufficient for the calcu-
lation of transmission coefficients for a point junction of
beams. For a line junction of plates or shells, it must
be further extended[4]. In this case, the wave guides are
two-dimensional and a wave can impinge from different
angles. Each of this angles θ of incidence corresponds to
a trace wave number k = k0cosθ at the junction. If the
DOFs at the junction are treated as functions of k, for
each angle of incidence a transmission coefficient may be
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Figure 2: Same as Fig. 1, but with the junction represented
by a network



plate 1 plate 2

Figure 3: A line junction with I-Beam, plate: steel, 2 mm,
beam flanges: steel, 4 mm, beam dimensions: 10 cm x 15 cm
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Figure 4: Bending wave transmission coefficient for the junc-
tion in Fig. 3 plotted over frequency

computed. Integration over all angles of incidence yields
the diffuse field transmission coefficient:

τ =
∫ π/2

0

τ(θ) sin θdθ. (5)

In practice, this calculation needs to be carried out nu-
merically.

A further possible extension of the approach is to account
for a lumped element at the junction, e.g. a point mass
or a coupling beam at a line junction. This is done by
adding the impedance matrix of that element to the sum
of impedances on the left side of (4). In the same way
a more complicated junction type may be treated. If
the junction is not a single point or line but consists of
a network (Fig. 2), the cross impedance matrix Zc for
that network can be added:

Zc+
⌈∑ (

KZnKT
)⌋

vc = (0 . . . 2Zmvmi . . . 0)T . (6)

In this case the number of unknowns increases to incor-
porate all DOFs at all ports of the network and d. . .c is
a matrix with the sums of the wave impedances for the
appropriate network ports as diagonal sub-matrices.

A last extension of the approach is concerned with point
to line junctions. As shown elsewhere[3], the point
impedance of a line junction may be calculated by inte-
grating over an appropriate wave number spectrum. The
same may be done for the calculation of transmission co-
efficients. The calculation procedure is then very similar
to that for the line junction, but the numerical integra-
tion must be carried out over the (−∞,∞) interval.
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Figure 5: Line junction with column: steel, plate: 2 mm,
column and beam: 10 mm x 20 mm
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Figure 6: Example result for the junction in Fig. 5: incident
x-bending wave on column to plate compression (red), shear
(orange) and bending (blue) waves and to all waves in beam
(green)

Summary
A generic approach for the calculation of power trans-
mission coefficients was presented. Included in this ap-
proach are several types of connections: line-connected
plates, point-connected beams, point-connected-plates
and point connections between beams and line-connected
plates.
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