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Introduction 
The problem at hand is best introduced with the help of an 
example, namely the problem of interpolating two functions 
as sketched in figure 1. Say, given two functions, f1 and f2, 
we want to create a third function f3, somewhere between f1 
and f2 depending on the parameter p  =  1 ... 0.  
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Figure 1: Interpolating two functions 

Complex Interpolation 
The interpolation formula (1) yields unexpected results if the 
start and end functions are complex valued. A practical 
example is an acoustic measurement of a loudspeaker on a 
turntable in order to measure the directivity. In this 
measurement an impulse response is taken for each angular 
step, say each 10 degrees.  
Figure 2 demonstrates graphically as an example, how 
directivity data can be displayed. The contour belongs to a 
software module, which not only displays data in a variety of 
ways but mainly is also the container of the measured data. 
The module stores the complex frequency responses in a 
matrix for each turntable position.  

 

 

Figure 2: Contours: SPL of directivity measurement. x-axis: log-
frequency, y-axis: linear radiation angles, z-axis: SPL in dB. Graphs: 
Mapping of a frequency response and a directivity polar plot 

The aim is now to provide a function, which extracts data 
from this matrix and displays either a single frequency 

response at a certain angle, or, a single directivity polar plot 
at a certain frequency as demonstrated in figure 2. Both 
parameters, the angle and the frequency, should be arbitrary, 
i.e. also values in-between the measurement points should be 
allowed. Further, the total response, i.e. the complex valued 
data stream, should be mapped and stored in the module of 
the frequency or the polar plot, respectively. In this way 
further complex-valued processing can be performed on the 
mapped data, such as a Fourier transformation for example. 
The problem is then to obtain a response in-between the 
angular measurement steps. If formula (1) is applied to the 
impulse response h1(t) at 0° and h2(t) at 10° then the 
interpolation rule is 
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Or, in spectral form, after a time-frequency Fourier 
transformation: 
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Figure 3: Mixing interpolation between H1 and H2 

Graphically this mixing algorithm can be sketched as 
displayed in figure 3. The interpolated response is a mix of 
response H1 and H2 according the parameter p. 
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Figure 4: Mixing interpolation between systems h1(t) and h2(t). Solid: 
h3 at 0° (h3 = h1). Dotted: h3 at 5° (interpolated). Dashed: h3 at 10° 
(h3 = h2) 

The time response version of the data is displayed in figure 
4. The solid and dashed curves are the response at 0° and 10° 
as measured. The dotted curve interpolates according to the 
mixing rule, equations (2a). Because we have selected 5°, 
which is halve way through, the dotted curve shows the 
mean value of both responses (p = 1/2). 
The frequency response version of the data is displayed in 
figure 5. The solid and dashed curves are again the response 
at 0° and 10° as measured. The dotted curve interpolates 
according to the mixing rule, equations (2b). However, in the 



frequency domain the result, although mathematically 
correct, does not yield the expected interpolation. We would 
like to have the interpolated amplitude curve (dotted) to be 
located somewhere in-between the solid and dashed curves. 
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Figure 5: Mixing interpolation between H1(jω) and H2(jω), level in 
dB of complex frequency response, 3rd oct. smoothed. Solid: H3 at 0° 
(H3 = H1). Dotted: H3 at 5° (interpolated). Dashed: H3 at 10° (H3 = 
H2) 

The question is, what went wrong, and then, which way to 
go for a better interpolation strategy, which yields 
reasonable interpolations, both in frequency and time 
domain. 
Let us first have a closer look to the mixing formula 2b, 
which can be written in polar form: 
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The squared amplitude of H3 is then, after some 
manipulations: 
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Here, the main point to note is that no interpolation 
parameter, p occurs in the phase difference of the correlation 
term. That means, first, there is an interference phenomenon 
and, second, the amount of interference is fixed by the phase 
difference of H1 and H2. The dip of the interpolated curve in 
figure 5 (dotted) at high frequencies is hence caused by 
interference. If we imagine the extreme case, where H1 and 
H2 are identical but phase inverted, then formula (4) would 
yield identical zero for H3 for p = 1/2. This would be fine for 
the interaction of waves but misleading for the purpose of 
morphing one function into another one. 

The "morphing" approach 
An alternative way interpolating complex functions starts in 
the frequency plane: 
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Equation (5) interpolates the amplitude and phase separately. 
Immediately it is clear that the squared amplitude yields the 
expected interpolation behaviour: 
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There is no phase dependence of the amplitude of H3 and, 
hence, no interference phenomenon. The result can be seen 
in figure 6. The amplitude (or level in this case) behaves as 
expected by smoothly morphing from one response to the 
other. The same is true for all the other components of the 
complex response, such as the real- and imaginary parts or 
the phase response. 
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Figure 6: Morphing interpolation between systems H1(jω) and 
H2(jω), Level in dB of the complex frequency response, 3rd oct 
smoothed. Solid: H3 at 0° (H3 = H1)- Dotted: H3 at 5° (interpolated). 
Dashed: H3 at 10° (H3 = H2) 

Most interesting however is the effect on the time response, 
h3(t), i.e. the inverse Fourier transform of H3(jω) as 
demonstrated in figure 7: 
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Figure 7: Morphing interpolation between systems h1(t) and h2(t), 
Solid: h3 at 0° (h3 = h1). Dotted: h3 at 5° (interpolated). Dashed: h3 at 
10° (h3 = h2) 

The dotted curve in figure 7 includes the time delay in order 
to morph response h1 into h2. This result is the one we 
would expect when interpolating response functions.  

In polar coordinates a response function can be written 
( )t)j(je)j(H)t,j(H ⋅+⋅⋅= ωωφωω  (7) 

The function exp(jΦ) is an infinity-to-one mapping because 
exp(jΦ) = exp(jΦ + j2πn). Hence, a continuous phase maps 
onto a circular repeating function with period 2π. Because 
exp(jΦ) is repeating itself, any interpolation in the exp(jΦ)-
plane would need to count the cycles of revolution. 
Therefore, the interpolation is easier to perform in the phase 
plane, which is continuous. 
The latter statement is may be "easier" from the theoretical 
point of view, but in practice we usually do not have access 
to a continuous phase function on which to perform the 
interpolation. In most cases the phase function is calculated 
from the real and imaginary parts by using the principal 
value of the arcus-tangens function, which is multi-valued. 
However, there is a way to numerically unwrap the phase 
response into a continuous function. It can be shown that the 
continuous phase is: 
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φ0 is an integration constant, which can be found by 
comparing the continuous phase with the principal phase. 


