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Introduction

Disconfort problems due to the noise emittence of brak-
ing systems in trains have suggested recently several me-
chanical analyses. This paper gives some of our results
obtained from the numerical modeling of TGV brakes
in relation with some experimental data. The numerical
discussion is based upon the Coulomb's law of contact
with a constant coe±cient of friction. A dynamic sta-
bility analysis enables us to show the loss of stability by
°utter of the steady sliding response of the pad on the
brake disks.

The braking system

The braking system of a TGV disk brake is mounted on
the bogie. It is composed of two symmetric plates with
lining under the form of pads. Four disks are mounted
on an axle. The applied normal force on a disk is about
19 kN at maximum.

Experimental data

The experimental data, obtained at the train station,
are di®erent squeal spectrum. For this, a microphone
has been mounted near a disk. The noise spectrum (¯g
1) shows the existence of 7 vibration frequencies which
merge from the background noise. They correspond to
the frequency interval 6 kHz to 20 kHz. A modal analy-
sis has also been performed from the dynamic response
of a bogie at rest. The ¯gure 1 gives the two surperposed
spectra with two FRF.

Figure 1: Superposed noise spectra

It is clear that some modal frequencies of the disk coin-
cide with some measured squeal frequencies.

Mechanical modeling

The problem suggests a mechanical modeling by de-
formable solids. In small deformation, the model of lin-
ear, homogeneous and isotropic elasticity is assumed to
describe the system of a disk with two brake linings. The
contact is unilateral following Coulomb's friction with a
constant friction coe±cient f .

Dynamic equations of the brake

The displacement u of the disk D in frictional contact on
@−C must satisfy the virtual work equation:
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n is the external normal to the disk D and uG the lining
displacement.

The constitutive equations are:
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w the relative sliding spead is: w = v + _u ¡ _uG
where v denotes the associated rotation velocity of the
disk.
In the same spirit, uG must satisfy a similar variational
equation (1).

Assumption H1: The squeal occurs at slow speed,
the rotation terms can be neglected in the expression
of the acceleration. Thus, the approximation ° = u;tt
can be introduced in (1) (cf. to [1] for a more complete
expression of °).



The steady sliding equilibrium
At equilibrium and under the assumption H1, w = v and
° = 0. The equilibrium displacement u satis¯es from (1):Z
D

²(u) : K : ²(u¤)d− =
Z

@−F

Fd:u
¤dS+

Z
@−C

(N:[u¤n]+T:u
¤
t )dS

(2)

8u¤ 2 Uad0 with Uad0 = fu=u = 0 on @−Ug
u = Ud on @−U

with

8<:
N · 0£
un
¤ · 0

N:
£
un
¤
= 0

and T = f:N:
v

jvj on @−C

The same equations must be written for uG. The dis-
cretized equations are:

K:U = R, KG:UG = RG

respectively for the disk and for the lining. With the
notation U = (Y;UN ; UT ), Y denotes the d.o.f. asso-
ciated with the nodes outside the contact zone. Then:
R = (F;N; f [Á]N) where [Á] is an appropriate matrix.
(U;UG) and (R;RG) must satisfy the unilateral contact
condition.

Figure 2: The steady sliding
equilibrium of the brake

Figure 3: Normal contact
reaction

Stability analysis of the equilib-
rium
The evolution of a small perturbed motion is now con-
sidered near the steady sliding equilibrium. For a sliding
motion without stick regime,

u = ue + û with [ûn] = 0 on @−
e
C

where ue is the equilibrium displacement and @−eC is the
contact zone at equilibrium.
The sliding condition leads to
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w
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The stability can be discussed by the linearization
method :
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with ŵ = [û;t] and Ne the normal contact reaction at
equilibrium. The perturbed motion û is governed by the
following variational equation under H1:Z
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Note that Ne < 0 on @−
e
C .

The discretization of (4) gives after the elimination of N̂ :

M:
Ä̂
U + C:

_̂
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M andK are non symmetric matrices. The displacement
are searched in the form Û = Xe¸:t. The high dimension
of the considered matrices is a source of di±culty. A
projection of the mass, rigidity and damping matrices on
a troncated basis Á of vibration modes without friction
is thus introduced. It follows the generalized eigenvalue
problem: £

¸2 ~M + ¸ ~C + ~K
¤
:Z = 0 (6)

with ~M = ÁTMÁ, ~C = ÁTCÁ, ~K = ÁTKÁ and X = ÁZ.
The un-symmetry of the considered matrices leads to
complexe eigenvalues and eigen-modes. A mode is un-
stable if Re(¸) > 0. On ¯gure (4), it is given in blue
the real parts of the eigenvalues in function of the eigen
frequency. The associated displacements are given for
some unstable modes. On the same ¯gure, the red ver-
tical lines are related to the measured squeal frequencies
(¯g 1).
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Figure 4: Unstable modes of the braking system

Conclusion
The given stability analysis gives a satisfactory modeling
of the squeal emittence. The modal basis proposed for
the numerical simulation is interesting since the squeal
modes are very closed to the vibration frequencies.
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