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Introduction
The stabilisation of the plane laminar jet-edge-flow is
studied with the general objective to gain experience in
flow control. The convective instability of the jet com-
bined with the feedback of pressure oscillations from the
edge to the nozzle results in a global instability, which
may evolve into a strong noise source. A feedback control
system shall be added such that the flow becomes stable.
The differences between this system and most mechanical
and electrical feedback systems are the inherently high
number of degrees of freedom and the imposibillity to re-
alize an equivalent open loop system. The identification
of the relevant system dynamics is done by an adaptive
controller, which needs a small broad-band test-signal,
in order to build a stabilising filter. For small distances
between the nozzle and the edge a good stabilisation is
achieved. However, the system becomes more sensitive
to the parameters of the controller, when this distance
is increased. Hence, and due to slow flow fluctuations of
flow parameters, the adaption of the feedback filter must
be done more carefully. Finally, at a certain distance the
stabilisation fails. Furthermore, a robust adaptive con-
trol scheme and a comprehensive model of the flow shall
be developed.

Experimental Setup
A plane laminar water jet (nozzle width w=4mm, jet ve-
locity u ≈ 50 mm/s) impinges on the edge of a wedge,
and the distance between the nozzle and the edge can be
varied (figure 1); the jet oscillates at 1 Hz, typically. The
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Figure 1: experimental setup of the jet-edge-system

central streakline of the jet is visualized by dye. So the
lateral deflection of the jet can be measured at a fairly
high accuracy (0.01 mm, 0.02 s) by means of a CCD cam-

era and a real time image processing system. Two mem-
branes are installed on both sides of the nozzle. They
move in parallel in order to impose an antisymmetric
pressure field on the flow which eventually shall compen-
sate the pressure gradient at the nozzle.

Modes and their Dynamics
The jet oscillates at different modes (e.g. mode II in
figure 1) characterized by the number of wavelengths be-
tween nozzle and edge, and depending on the jet edge
distance. At certain distances the jet may oscillate at
different modes with non harmonic frequency ratios. The
red curve (mode II) in figure 2a is the power spectrum
of the jet deflection (measured at a certain upstream po-
sition) with a frequency ratio fhigh/flow = 2.8 6= 3 be-
tween the main peak frequencies, while the blue curve
is a single mode oscillation with harmonics in the power
spectrum. So the question arises whether mode II is a
mixture of two modes or one self-contained mode. In
the latter case a strong coupling of the ‘incommensu-
rable’ frequency peaks is expected, which is not obvious.
Describing the dynamics of the mode it is convenient to
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Figure 2: hysteresis and mode switching. a: power spectral
density of the measured lateral streakline position, for mode
I and mode II: nozzle-edge-distance 7 nozzle widths, Rew =
200 b: a small actuator impuls with frequency of the second
harmonic switches the native modes of the system

use the spatial mode characteristic to highlight the time
development of the system. Using a proper orthogonal



decomposition, pairs of real eigen-functions can be com-
bined to complex eigen-functions, considering the wave-
like character of the instability. (Thus there is no need
of short time spectral analysis.) In figure 3 the state of
the system changes spontaneously from mode I to mode
II (here fhigh/flow = 2.95). The obtained complex pro-
jection coefficients η represent the time development of
the spatial characteristics corresponding to the frequency
peaks. In average the phase arg(ηhigh) runs fhigh/flow

times faster then arg(ηlow). However the phase-shift is
not continously but rather in steps. Actually, the phase
of the low frequency peak is triggered by the high, but
if the phase exceeds a certain treshold, the system locks
to the next stable phase relation. Imposing a short small
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Figure 3: Natural mode II switching to mode I without con-
trol a: time series b: magnitude of the projection coeffiecent of
the eigen-function representing the low/high frequency parts
of the spectra c: arg(ηlow)− arg(ηhigh)/3

actuator signal with a frequency equal to the second ‘har-
monic’ of the natural modes, the system synchronises its
states. The time-series in figure 2b shows this forced
mode switching. Keeping this fact in mind one has to
handle this system very gently.

Adaptive Control
The model of the flow and the control scheme are de-
picted in figure 4: The dynamics of the jet including
the convective amplification of disturbances is modelled
by two linear transfer-functions J1 and J1 · J2 describing
some lateral deflection of the jet that is introduced at
the nozzle and is propagated to the measuring position
and to the edge of the wedge, respectively. The unknown
feedback F · J2 has to be canceled by the adaptive con-
troller. The target transfer-function T (representing the
estimated minimal correlation between the test-signal s
and the measurement signal m) is obtained through a
measurement without wedge. Choosing a suitable target

transfer-function, the adaptive algorithm is stable and
the controller feedback C can be causally adapted. This
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Figure 4: adaptive control cheme

leads to a stabilisation of the flow up to a nozzle edge dis-
tance of 8 nozzle widths. The power spectral density of
the measurement signal with and without control is de-
picted in Figure 5. The spectra indicates a mode mixture
(b) so suppression is more complicate and the adaption
must be more robust in presence of the fluctuations and
the peak locking of the measurement system.
The estimated feedback C can then be used to obtain
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Figure 5: power spectral density of the measurement signal;
with and without control for different nozzle egde distancies,
Reynoldsnumber Uw/ν ≈ 200 with nozzle width

an estimated physical feedback F = Â ·C · Ĵ−1
2 from the

wedge to the nozzle. So a physical model of F can be
developed.
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Kanten-Strömung , Diss. Math.-Nat. Fak. Univ.
Göttingen (1999)

[2] movies of stabilization. URL: http://www.physik3.
gwdg.de/∼arno


