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Introduction 
Nonlinear propagation of intense acoustic waves through 
inhomogeneous medium is an important problem for many 
modern applications including sonic booms in a turbulent 
atmosphere, explosive waves in a fluctuating ocean, and 
intense ultrasound and shock waves in biological tissue.  
Two different types of inhomogeneities are of importance: 
scalar inhomogeneities (spatial distribution of sound speed 
and density), for example, due to temperature variations in 
the medium or variations in tissue type; and vector 
inhomogeneities (spatial distribution of particle velocity), for 
example, due to the presence of vortices or flow in the 
medium [1]. Sound scattering by vortices is still an open 
problem despite a lot of theoretical analyses and 
experimental studies. In all of these problems the combined 
effects of inhomogeneities, diffraction, and nonlinear 
propagation determine the peak and average characteristics 
of the acoustic field. A complete theoretical model that 
includes all the above mentioned phenomena is very 
complicated for analysis, thus most results to date have been 
obtained for simplified models. Nonlinear geometrical 
acoustics has been applied [2, 3], parabolic equations have 
been derived for linear sound propagation in inhomogeneous 
moving media [4] and for nonlinear waves in media with 
scalar inhomogeneities [5]. In this work, a nonlinear 
parabolic wave equation with inclusion of both scalar and 
vortex inhomogeneities is presented.      

Theoretical model 
Propagation of the plane wave along the x direction through 
vortex in linear approximation is governed by the modified 
KZ equation: 
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where p is the acoustic pressure, x the principal propagation 
direction, c0 the sound speed in non-perturbed medium, τ  
the retarded time, vx the components of the vortex along the 
coordinate x, vy and vz – along the transverse directions y and 
z. The third term on the left side of Eq. (1) corresponds to 
the scalar type of inhomogeneities and the forth term 
corresponds to the vector type inhomogeneities.      

In dimensionless coordinates and axially symmetric 
geometry the modified KZ equation can be represented as: 

πδ
∆γγ

θ
πδγ

θθ 4
2 P

R
PVPVPNP

z
P

rz
⊥=





∂
∂

+
∂
∂

−
∂
∂

−
∂
∂

∂
∂  (2) 

The coordinates are normalized by the following 
characteristic vortex length scales: r∆  vortex size along 
radial direction, x∆  vortex size along x direction. 
Dimensionless coordinates rrR ∆= /  and xxz ∆= / , 

ωτθ =  dimensionless time, 0/ ppP =  acoustic pressure, 

0
3
000 / ρωε∆ cpN x=  nonlinear parameter, λδ /r∆=  is a 

ratio between ∆r and acoustic wavelength, rx ∆∆= /γ  is a 
ratio between length and thickness of the vortex.  It is 
assumed that the dimensions of the vortex could be different. 

Numerical results  
We consider the propagation of an initially plane harmonic 
wave through a sequence of two axisymmetric vortices.  The 
first vortex with both axial and radial velocity components 
introduces a disturbance of the acoustic field that scatters on 
the second vortex.  In dimensionless coordinates the first  
axisymmetric vortex can be represented as [6]: 
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where A is the velocity amplitude normalized by the sound 
speed c0. Here we scaled the amplitude of Vz и Vr so that 

( ) 0=Vdiv
r

.  The center of the vortex is located at z = z0, 
R = R0.  

The second vortex with a forced linearly growing core and a 
free exterior has only a radial velocity component given by:  

c
c

c
cR RRif

b
zz

R
RVV <
















 −

−⋅= ,exp
4

c
cc

cR RRif
b

zz
R
RVV >
















 −

−⋅= ,exp
4

 

(4) 



0 15 30 45 60
0

2

4

6

8

R

z

0

2

4

6

8

R

a) 

b) 

The parameters of the first vortex were A = 0.03, R0 = 4, 
z0 = 3, 0.1=γ , δ = 3.0.  The parameters of the second 
vortex were: Vc = 0.3, Rc = 1.5, zc=30, b = 10.  Spatial 
distribution of radial (a) and axial (b) velocity components 
of the vortices is shown in Figure 1. 

 

 

 

Figure 1: Geometry of inhomogeneities. Axial (a) and 
radial (b) components of mean velocity field. 

 

In order to show the importance of the inclusion of the 
transverse component of inhomogeneity into the KZ model, 
the problem was considered first in the linear approximation  

 

Figure 2: Acoustic pressure field calculated with 
account of only axial z component of inhomogeneity (a) 
and including both axial z and radial R components (b) 

 

both with and without the transverse component VR of the 
vortices. The results are presented in Figure 2 for the 
acoustic field of an initially plane linear wave transmitted 
through the sequence of these two vortices.  Simulations 
were performed with (Fig. 2b) and without (Fig. 2a) account 
of the radial component of velocity inhomogeneities, that is 
neglecting the components shown in Fig 1b.   

In both cases we can see scattering from the first turbule 
located at z = 3.  The flow in the first turbule is directed 
towards the boundary z = 0 closer to the axis (dark area in 
Fig. 1a), that results in focusing effect, and opposite from the 
boundary further away from the axis (white area in Fig. 1a), 
that results in defocusing of the wave.  Because of the 
homogeneous distribution of the acoustic pressure in a plane 
wave passing through this first turbule, no visible effect of 
radial flow velocity is seen until the appearance of the 
second turbule.  Then the scattering is much stronger when 
the second turbule Vr ( z = 30 ) is included in the simulation.  
This illustrates the importance of including the radial 
velocity component of vortex inhomogeneities in the 
prediction of the scattered field for further consideration of 
nonlinear problems 
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