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Introduction
The aim of this work is to measure the group velocity of
an acoustic wave propagating in a complex media. This
media is a lattice formed by Helmholtz resonators peri-
odically connected on a cylindrical tube. This kind of
system, as it has been demonstrated, presents a strong
dispersion characterized by pass and forbidden band in
the spectral domain [1].
This property is used to show that the group velocity
of an acoustic wave can be higher than sound velocity
(acoustical analogy for a group velocity higher than light
velocity in electromagnetism).

Propagation in one-dimensional
discrete media
A one-dimensional lattice made of an infinite long cylin-
drical waveguide connected to an array of Helmholtz res-
onators (numbered by n) is considered. The resonators
are connected to the pipe through a pinpoint connection,
the radius of the throat cross sectional area sn of the nth

resonator being assumed to be small compared to the
wavelength of the acoustic wave. Each connection is lo-
cated along the axis of the pipe by its coordinate zn with
spacing dn for two consecutive part as shown in figure 1.
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Figure 1: Dispersive medium used to propagate an acoustic
wave.

The propagation equation of an acoustic wave in such a
system is given by [2]:
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where p(z, t) is the pressure, v(z, t) is the acoustic veloc-
ity, ρ is the air density, S is the cross section of the pipe
and c is the sound velocity in free space.
The right hand side term acts as an array of secondary
point sources (scatterers) which work when they are illu-
minated by the wave travelling in the pipe.
For a monochromatic acoustic wave whose frequency is
below the cut-off frequency of the waveguide, the solution
of the equ.1 is seeked by the transfer matrix method. In

the (n + 1)th cell (zn ≤ z ≤ zn+1) pressure and velocity
are respectively denoted by pn and vn, and the solution of
pn(z) is given as a linear combination of wave travelling
in opposite direction :

pn(z) = Anejk(z−zn) + Bne−jk(z−zn) (2)

An and Bn being the amplitude of the forward and back-
ward waves.
Propagation through the lattice from zn to zn+m is de-
scribed by the relation
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For a periodic lattice, the dispersion relation takes the
form [2]:

cos(qd) = cos(kd) +
σ

2k
sin(kd), (5)

q being the Bloch wave number and σ = −jωρsn/SZn

with Zn the impedance of each resonator.
Waves that obeys to the relation | cos(qd) |≤ 1 are within
a pass band, and travel freely in the duct, and waves
such that | cos(qd) |> 1 are in a forbidden band and are
quickly spatially damped. They become evanescent so
they can not propagate.

Experimental setup
The experimental lattice is a plexiglass tube periodically
charged by Helmholtz resonators every 20cm as shown
in figure 2. The signal acquisition is made by two mi-

anechoic termination
microphone down

microphone up

source

to acquisition procedure

Helmholtz resonators

Figure 2: Dispersive medium used to propagate an acoustic
wave.

crophones located at the beginning and at the end of
the lattice. Thus, signal stemming from the two micro-
phones can be compared and analyzed. The input signal
is a gaussian modulated sinus. Such signal has the par-
ticularity to have the same gaussian form in the temporal
domain and in the spectral domain.
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Wave velocity has been calculated by two methods based
on the comparison of the arrival time difference of input
and tunnelled signal. The first method is based on the es-
timation of the maximum of each signal, and the second
one on the estimation of the barycenter of each signal.

Experimental results
A 1D lattice act as a filter in the frequency domain.
Studying such a medium reveals the presence of forbid-
den bands and passbands. The studied system presents
two kinds of stopbands (illustrated by arrows in figure
3): those due to the resonator include in [300:450]Hz
(Helmholtz resonance), and [1100:1200]Hz (correspond-
ing to the length of the cavity), and one other that is the
specific characteristic of the periodic lattice (dn = 20cm)
at 870Hz.
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Figure 3: Frequency response of the periodic lattice.

Those results are in good agreement with theoretical
ones.

Group velocity in a passband

The studied wave frequency is 600Hz, belonging to a
passband. Signal would not suffer from the different in-
terferences at the discontinuities.
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Figure 4: Temporal signals for different distances from the
source in the passband for a 600Hz wave frequency: z =
1.15m, 2.15m, 3.15m, 4.15m, 5.15m, 6.15m.

Figure 4 shows the temporal signals at different distances
from the source. Temporal envelopes are not deformed
by the propagation. The only change is the decrease of
the wave amplitude, due to the attenuation during the

propagation. Results of the wave group velocity calculus
are in close agreement with theoretical sound velocity
344m.s−1.

Group velocity in the Bragg’s band

As previously, measurements at different distances from
the source have been performed (same location as the
previous case). Signal frequency is 885Hz belonging to
the Bragg’s band. The figure 5 shows that, during the
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Figure 5: Temporal signal for different distances from the
source in the Bragg’s band for a 885Hz wave frequency:
z = 1.15m, 2.15m, 3.15m, 4.15m, 5.15m, 6.15m. Waves am-
plitudes have been increased because of the strong attenuation
due to the propagation in dispersive medium

propagation, the signal is not much distorted, but its
amplitude is nearly a tenth of amplitude wave belonging
to a passband. Wave group velocity is calculated and is
estimated to 2000m.s−1.

Conclusion
It appears that a periodic lattice acts as an anomalous
dispersive medium when the frequency of the studied
wave is belonging to the Bragg’s band. Its group ve-
locity is about 2000m.s−1, then velocity is then 6 times
more important than in free space.
Different researches have been made on this ultra-fast
sound velocity phenomenon in some specific propagating
conditions but these works are limited to a few number
of resonators [1]. The work carried out here allowed to
measure propagating velocities higher than sound for 30
resonators. Such a measurement of group velocity higher
than sound has never been demonstrated on such dis-
tances.
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