Analysis of energy flow and energy densities for one-dimensional acoustic fields
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Introduction

Energy methods have proved to be an efficient technique
to model acoustics or structure vibrations in the high fre-
quency range. Some of them assume that structural in-
tensity is linked to total energy density and lead to a dif-
fusion equation for structural intensity [1]. These approx-
imate methods produce good results for one-dimensional
systems [2], but the extension to two-dimensional sys-
tems fails [3]. Our purpose is to present an exact en-
ergy formulation for any frequency in one-dimensional
systems. This formulation is able to model power trans-
fers for structural acoustics in dissipative media.

Configuration

In this paper we consider a one-dimensional system in
which only longitudinal waves can propagate (see Fig-
ure 1). Only four assumptions are put forward: small dis-
placement and small strain, homogeneous and isotropic
medium, steady state harmonic waves and hysteretic
damping material.
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Figure 1: Configuration of the studied system.

For such a configuration, the displacement formulation
gives the solution. The displacement potential ¢(z) is the
solution of a propagation equation with a second member
due to the concentrated load f, = f, ez at * = 0, and
is given by
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¢(z) = Crcos(kx) + Casin(kx) + (cos(kx)—1) (1)
where Hj is the Heaviside function. The two coefficients
C, and (s are given by the two specific impedances z;
and ze (normalized by the characteristic impedance of
the medium) that traduce mixed boundary conditions

[4], respectevely at x = —L; and at © = Lo
{ ar(—L1) —jkza da(=L1) = 0 o
—¢a2(L2) —j k22 ¢2(L2) = 0.

The displacement u(z) is obtained from the potential
¢(x) by derivation: u(z) = ¢ ,(x) ex. From w and ¢
we can obtain quadratic quantities, the kinetic energy
density T and the strain energy density U:
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A¢ Ad*. (3)

Energy densities lead to the structural intensity I by in-
tegration of
div I = —2jw(T — U) — % . (4)

Quadratic formulation

Another way to obtain exact quadratic variables is to
directly compute them from the linear equations linking
them. In our configuration, energy densities 7" and U
satisfy the system of equations
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where sg is the jump of T;, s; the jump of U, and s
the jump of U. It must be noticed that these three dis-
continuities are given by the displacement formulation.
The four mixed boundary conditions verified by T and
U are derived from equations 2 and 3.

AT + (B2 + k)T - 2kU =
AU + (k2 + K*2)U — 2627 =

Simulations
Parameters

Simulations were carried out for longitudinal waves prop-
agating in a steel medium between -L; = —10 m and
Lo = 10 m at the frequency of 5 kHz. Properties of
the material are given below (see Table 1). At z = 0,
fz =1 Pa. Boundary conditions were chosen disymmet-
ric: z1 = 0 and zo = 1. Such values mean there is

e a total reflexion of the wave at * = —L; (due to
U 5 (—L1).ex=0),

e an anechoic end at x = Lo.
Density p (kg m™3) 7800

Young’s modulus E (Pa) 2.1 101 (1 + 5 0.01)
Poisson’s ratio v 0.3

Table 1: Properties of the material

Results

The quadratic variables obtained by the displacement
formulation and those obtained by the quadratic for-
mulation are superimposed (see Figure 3, Figure 4 and
Figure 5). Such results confirm that the quadratic for-
mulation, constituted by equations 5 and mixed bound-
ary conditions for 7" and U, leads to the exact quadratic
variables. Quadratic variables present two scales of vari-
ations (for instance see Figure 3). Large scale spatial



variations can be observed in the entire dissipative struc-
ture. They correspond to propagative components whose
decreasing from z = 0 is related to the hysteretic damp-
ing 1. Note that in the part z > 0 there is nothing but
propagative components because of the anechoic end at
x = L. Small scale spatial variations are only present in
the part z < 0. When compared to the displacement field
(Figure 2), the size of those variations is the half wave-
length. They correspond to stationnary components due
to the total reflexion condition at x = — L. This can also
be interpreted in words of active and reactive components
in viewing the imaginary part of the structural intensity
(Figure 5): for x > 0, structural intensity is purely active
since there is no backward propagating wave. As far as
the external load is concerned, the injected power den-
sity related to f, appears in the jump of Re(I) at x =0
(Figure 4).
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"""""""" displacement formulation
——— quadratic formulation

Figure 3: Kinetic energy density.

Conclusion

The quadratic variables (such as energy densities and
structural intensity) obtained by the displacement formu-
lation on the one hand and by the quadratic formulation
on the other hand are exactly the same. Thus we have at
our disposal an exact quadratic formulation to describe
power transfers for any frequency in one-dimensional sys-

tems. These quadratic variables present two different
spatial scales. Our objective is to keep only large scale
components. So the next stage of this work will consist in
traducing this objective in words of boundary conditions
and discontinuities involved by external loads.
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"""""""" displacement formulation
———  quadratic formulation

Figure 4: Real part of the structural intensity.

""""""""""" displacement formulation
——  quadratic formulation

Figure 5: Imaginary part of the structural intensity.
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