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Tuning of Musical Glasses through material removal
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Generalities and studied problem

Traditionnaly, a musical glass is shaved just over the stem
to obtain the desired pitch. Can the physical cause of
this traditional method be identified? In preamble, some
vibrational modes of a glass and its frequency spectrum
are observed.
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Figure 1: Modal forms and spectrum of a vibrating glass

It is commonly admitted that the first circonferential
mode affects the first partials. The number of harmon-
ics when the glass is excited (Figure 1(c)) and the fast
disappearance of the higher orders when the glass is no
longer excited are noteworthy. This spectrum cannot be
fully explained as of today.

Chosen approach

In the case of a glass of very simple geometry, A.P. French
[1] gives in 1983 an expression of the eigenfrequencies
that puts the way to considering the tuning problem. In
fact, if n is the order of the circonferential mode (n > 2)
and m the order of a flexion mode of a generatrix of the
cylindrical glass, the frequencies are described as

fmn = Kh\/

where (3, ~ m — 5 (very roughly for m = 1) and b = 7}
with R the radius of the cylinder, L its height and h the
thickness of its walls. Rewriting
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the contribution of the circonferential index n and of the
flexion index m are decoupled when # is neglected be-
fore 1 (also very roughly for n = 2). One would there-
fore obtain f,., ~ \/f2, + f2 and actually f,, is nearly
the expression of the frequency of a clamped-free beam
in flexion. Moreover, the tapering of the glass’ bottom
seems to affect the circonferential modes (f?) very little,
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on the contrary for f2. It seems therefore natural to con-
sider the tuning problem via the study of the influence
of material removal on a generatrix of the glass, assim-
iliated to a clamped-free beam. The considered beam is
made of glass (E = 6.15-101 Pa, p = 2880 kg - m~3), has
a length of 5cm and a thickness of 1.5mm.

Analytical method of small pertur-
bations

A simple situation enlightens the flexion equation of a
non-uniform beam
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Let it be a beam of length L, thickness h, rectangular
section .S, density p, Young’s modulus F, gyration radius
a and moment I. If the thickness varies linearly along Oy,
one has h(y) = h(0)(1+py) or %(1—!—/@) with pL <
1. Noting hg = h(0) and hy, = h(L), the expressions of
the first order are: S(y) = So(1 + uy), a®(y) = ad(1 +
2uy), I1(y) = Io(1 + 3py) and v*(y) = 75(1 — 2py) with
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from which one obtains
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The goals are the eigenfrequencies and modes. The

modes (,(y), searched in the base of the modes (xo(y)
of the beam of uniform thickness hg (or hy) are writ-
ten G (Y) = D peq bmkCro(y). Cmo(y) outweights the rest
when b > by Vm # k. The awaited frequencies
(near the frequencies of the uniform case) are written
f’m me(l + H’rn) with em < 1a or w72n = w'rQnO(l + 29m)-

The resolution of the first order being the goal, using the
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above approximations, Cow2,0Cmo and

Cowiogko, one obtains
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Since 60, only appears in the first term, a way to isolate
it only would give access to 6,,. In fact, the projection
of the total expression on mode (jo(y) with j # k and
particularly for j = m gives
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where the modes (0(y) and their derivatives are ana-
lytically available [2]. In the case of material removal
at the bottom of the glass, the initial situation uses a
uniform thickness of hy. The eigenfrequency depend-
ing directly on h, it appears f,, =~ fmo (1 +Km%)
Fmei (L+ K f) = four [L+ (8 — 1) L]

Numerical methods

The flexion equation is
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with an excitation source in ys. The solution
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satisties " v(y) | 355 + 6158 — 781 = 2uy)C(v)] dy

fOL v(y)d(y — ys)dy VYr(y) belonging to a subspace C,
to be determined. Taking the boundary conditions into
account, integration by parts gives
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With the domain [0... L] decomposed into elements, the
. L N Yj .

integral becomes ["...dy = >, fy]_”l ...dy; the ele-
ment j has nodes j and j 4+ 1 of coordinates y; and y;4;.
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On each element, the displacement is sought under a
polynomial cubic form. To the element j on [y;,y;+1]
corresponds the segment [0, y,;4+1 —y;] via y = y; +u, re-
sulting in fjj_j“ fly)dy = fohj f(u)du. The form of ¢(u)
on the element [0, h;] leads to {(u) = N1 (u);+Na(uw)b;+
N3 (u)(j41 + Na(w)@;q1 with the base functionsN; (u) =
Hud — FZu? + 1, Na(u) = 5u® — 2u? + u, N3(u)
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When all elements are of the same dimension h, the ma-

trices coming from the integration on each element lead
to elementary matrix [We(w, p,y;)] in
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The assembly is the matrix representation of the sum-
mation of the elements and the continuity of the dis-
placement and rotation at the nodes. When the essential
boundary conditions are taken into account, the final ma-
trix is of dimension (2N, 2N).

(6¢j,005,0C5 11,005 11)[We(w, i1, ;)]

The resonance frequencies of the beam are obtained by
sweeping: a displacement excitation is applied at the free
end and the frequencies obtained show vibration ampli-
tude maxima (also maxima of > .. | ¢; |). In the
case of a beam with a thickness variation towards the
clamped end, the method described above leads to a nu-
merical solution that can be compared to the solution
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obtained anlytically with the small perturbation method
(see Figure 2).

Frequency variation vs thickness variation
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Figure 2: Variation of the first mode against material re-
moval. The three experimental values are for different glass
shapes.

Discussion

Keeping in mind that the eigenfrequency variation due
to the behaviour of the glass generatrix is only a contri-
bution to the eigenfrequence variation of the whole glass,
it can nevertheless be stated that the grinding process
results in a frequency reduction. Figure 2 shows that a
material removal of at least 3% is necessary to reduce the
frequency by a half tone (approx. 6% relative variation).

Tradition states that the frequency can be raised by more
than one octave by thinning the walls near the top of the
glass (here this would mean a negative p with an initial
thickness of hg). This can not however be verified with
this model, as it would provide only a very slight increase.

It is interesting to compare these frequency variations to
the experimental values published in [3], which take the
whole glass into account. The results obtained hint that
the flexion modes are preponderant in the tuning process.
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