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Introduction
Noise is a major problem for people living in urban ar-
eas. Consequently, many mathematical and numerical
models have been derived to predict the sound propa-
gation in streets. However, because of the complexity
of the façade effects, these models are not still satisfac-
tory. The purpose of the present paper is to propose
a general mathematical formalism, to predict the tem-
poral and the spatial distribution of the diffuse sound
field energy in urban areas, including diffuse reflections
by building façades. The model is based on an applica-
tion of the classical theory of particles transport applied
to the concept of sound particles. As an example, an
application to a narrow street is proposed.

Transport model

Sound particle concept

According to the geometrical acoustics assumptions, the
sound propagation may be represented by sound particles
or phonons. In this way, as mentioned by Joyce [1], geo-
metrical acoustics is a special case of the classical-particle
dynamic. A sound particle is then defined as a classical
point particle by its elementary energy e, its position x

and its velocity v,whose norm is equal to the sound ve-
locity c. Interactions and collisions between particles are
neglected. The phonon follows a straight line until its
impact with obstacles or building façades. During a col-
lision, the velocity direction is deflected instantaneously.
By assumption, urban areas are considered as ergodic.
Hence, the description of the N particles system can be
reduced to the knowledge of an artificial single particle
system in a 6-dimension phase space Γ involving the three
usual space and velocity coordinates (x,v). The statisti-
cal behavior of the system is then obtained from statis-
tical mechanics, by using the single particle distribution
function f(x,v, t). It represents the amount of particles,
at time t, with velocity v to within about dv, in an ele-
mentary volume dx located at x.

Transport equation

In this paper, scattering by urban objects in the street is
neglected, so collisions of phonons only take place on the
boundaries. The evolution of the sound particle density
in urban areas is then similar to the evolution of the
molecular density in a rarefied gas or Knudsen gas. Thus,
the main equation of the model, can be derived from the
transport theory to give:

∂f

∂t
+ v · ∇xf = 0. (1)

Boundary conditions

Typically, surfaces are made up of many irregularities due
to window recesses, decorative structures, etc. According
to the size of façade irregularities and frequency, reflec-
tions may be specular or not. The ratio of non-specular
and specular reflection is expressed by the accommoda-
tion coefficient d (x). It varies from 0, for non-specular
reflection, to 1 for perfect specular reflection. This coef-
ficient is similar to the well known diffuse-reflection co-
efficient δ = 1 − d [2]. If the reflection is specular, the
reflection can be considered in a deterministic way. In the
second case, surface reflection can be introduced in the
model, by considering a probabilistic approach. Thus,
a positive, integrable and smooth function R(x,v,v′), is
introduced. It represents the probability that an incident
sound particle with a velocity v

′ leaves the boundary, at
position x after reflection, with a velocity v. At last, in
the present approach, the wall absorption is expressed in
a probabilistic way by considering the probability α(x)
for x ∈ ∂X, that a sound particle hitting a façade at the
position x is absorbed.

The boundary conditions express the flow of reflected
particles by a building façade as a function of the incident
particle flow. By considering the part of specularly and
non-specularly reflected sound particles, the flow conser-
vation is written

|n ·v| f −(x,v, t) = (1−α(x))

[

d(x) |n ·v ∗| f +(x,v ∗, t)

+ (1 − d(x))

∫

Γ+

R (x,v,v′) |n · v′| f +(x,v′, t) dv′

]

(2)

where the left member of this expression represents the
reflected flow. The right member term weighted by the
reflection coefficient (1 − α(x)), expresses the specular
flow (first term) and the non-specular flow (second term).
The + an − exponents are introduced to restrict the func-
tion f(x,v, t) to the phase spaces Γ+ and Γ−, represent-
ing the incident and reflected sound particles respectively.

Application to narrow streets
As an example, the model is applied to the sound propa-
gation in an empty narrow street with partially diffusely
reflecting surfaces characterized by a Lambert’s Law.
In this case, the problem is completely defined by the
transport equation (1) with the boundary conditions (2).
However, nowadays, there is no exact analytical solution
for such a system of equations. Although the problem
could be simulated by numerical Monte-Carlo algorithm,
the choice was done to find an asymptotic solution, using
probabilistic considerations.



Let us consider a narrow street, where the width ℓ is
much smaller than length and height. The sound absorp-
tion due to the pavement and the building façades, is ne-
glected. If the sound source is located on the ground, the
sound propagation in a narrow street is then similar to
the propagation between two parallel planes. If the reflec-
tion law is symmetrical with respect to the normal to the
façades and does not produce grazing reflection (as the
Lambert’s law for example), the problem can be solved
by an asymptotic approach derived by Börgers et al. [3].
The aim of this approach is to show that the transport
equation may be reduced to a diffusion equation. This
result can be proved using extensive mathematical devel-
opments that are detailed in reference [4]. It shows that
the distribution function f(x,v, t) = f(x, y, z, u, v, w, t)
may be expressed as a product of two functions q(x, y, t)
and φ(z, u, v, w). The last function can be easily calcu-
lated, leading to a constant. It suggests that the sound
energy is uniform along the street section z. Moreover,
it can be shown that the function q(x, y, t), representing
the sound field distribution in the plane (xOz) parallel
to the façades, is solution of a diffusion equation

∂q

∂t
−K

[

∂2q

∂x2
+

∂2q

∂y2

]

= 0. (3)

K is defined as the diffusion coefficient: K = [(1+d)/(1−
d)]× [ℓ c/4]. In order to have a more realistic solution of
the temporal and spatial distribution of sound energy in
the street, the sound absorption by the openings, the
pavement and the building façades have also to be intro-
duced in the diffusion model. This is done by introducing
an exchange coefficient h in the classical boundary con-
ditions of the diffusion equation, at both extremities and
at the opened top of the street [4].

Experimental validation
Experiments were carried out in a pedestrian street of
210 m long, 18 m high and 7.90 m wide [5]. Sound levels
and reverberation times were measured, along the street,
for each 1/3 octave bands between 500 and 5000 Hz.
First, these experiments confirm that the reverberation
times and sound pressure levels are quite uniform inside a
street section, even very close to the source. The model is
then in agreement with the experimental results. More-
over, Figure 1 shows the respective comparison between
the reverberation times and sound attenuation along the
street, to the theoretical solutions for several of d. It can
be observed that the model is quite in agreement with
experiments for d between 0.4 and 0.8.

Conclusion
This paper shows that the transport model may be a so-
lution to predict the diffuse sound field propagation in
urban areas. The expression of the diffusion equation
is given for a Lambert’s law, but similar developments
could be also investigated for any reflection law with a
symmetry around the normal to the wall, and without
grazing reflection. In a practical point of view, it would
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Figure 1: Mean reverberation times (upper curve) and mean
sound level (lower curve), along the street, calculated by the
diffusion model for d = 0.2, 0.3, . . . 0.9 compared with the
experimental data.

be interesting to consider real reflection laws and accom-
modation coefficients for the building façades, in order to
validate and apply the model in all types of urban areas.
However, it is then necessary to estimate or to measure
these two parameters in urban areas.
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