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Introduction

BEM – FEM coupling is widely used for the simulation
of the interaction between structural vibrations and ra-
diated acoustic fields. Employing the FEM for the struc-
ture and the BEM for the acoustic field exploits the
specific advantages of the two methods. However, the
efficiency of BEM – FEM simulations suffers from the
fully populated BEM matrices. In recent years, fast al-
gorithms have been developed that allow a sparse repre-
sentation of the BEM systems. In the presented paper, a
coupling scheme is developed that accounts for the prop-
erties of the fast multipole BEM. The coupling algorithm
is based on Lagrange multipliers and provides high flex-
ibility in the choice of discretizations. For the solution
of the resulting saddle point problem, an approximate
Uzawa algorithm is employed.

Acoustic-Structure Interaction

A structure fully submerged in an acoustic fluid as dis-
played in Figure 1 is modeled as a thin Kirchhoff plate
on the interaction boundary Γint. The out-of-plane dis-
placement is denoted by w, the loading f = f0 + f e

consists of surface forces due to the acoustic field f0 and
externally applied forces f e. The time-harmonic pressure
p in the acoustic field Ωf is governed by the Helmholtz
equation 4p + κ2p = 0 with the circular wavenumber
κ = ω/c0. The acoustic flux on the boundary is defined as
q = ∂p/∂~nf. For simplicity of presentation, the boundary
∂Ωf = Γ = Γint∪ΓN is composed of acoustic-structure in-
terface and Neumann boundary. Dirichlet boundary con-
ditions or computations on exterior domains can be im-
plemented without difficulties. On the acoustic-structure
interface Γint the coupling conditions enforce equilibrium
p = f0 and continuity q = −ρ0ω

2w.
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Figure 1: Structure and acoustic domain.

Mortar Coupling

A mortar algorithm is employed for the BEM–FEM cou-
pling that allows a non-conforming discretization of the
sub-domains. The BEM mesh is chosen as mortar side
and the interface pressure is interpolated as Lagrange
multiplier λ = p = f0.

The FEM for the Kirchhoff plate is derived from the vari-
ational formulation

a(∇w,∇vw) −

∫

Γint

vwλdsx =

∫

Γint

vwf e dsx . (1)

A detailed introduction to the BEM can be found in [1].
For the coupling algorithm, the method is derived from
the boundary integral equation

p(x) =
1

2
p(x) +

∫

Γ

P ∗(x, y) q(y) dsy

︸ ︷︷ ︸

(V q)(x)

−

∫

Γ

∂P ∗(x, y)

∂ny

p(y) dsy

︸ ︷︷ ︸

(Kp)(x)

, x ∈ Γ , (2)

and the hyper-singular boundary integral equation

q(x) =
1

2
q(x) +

∫

Γ

∂P ∗(x, y)

∂nx

q(y) dsy

︸ ︷︷ ︸

(K′q)(x)

−

∫

Γ

∂2P ∗(x, y)

∂nx∂ny

p(y) dsy

︸ ︷︷ ︸

−(Dp)(x)

, x ∈ Γ . (3)

The single layer potential (V q)(x), double layer poten-
tial (Kp)(x), adjoint double layer potential (K ′q)(x) and
the hyper-singular operator (Dp)(x) are the well-known
boundary integral operators with the fundamental solu-
tion P ∗(x, y) = eiκ|x−y|/(4π|x − y|) defining the integra-
tion kernels.

The pressure and flux fields on the boundary are decom-
posed as p = pint + p̃ and q = qint + q̄, where q̄ are the
prescribed Neumann boundary conditions and p̃ = q̄ = 0
on Γint.

Using Equation (2) tested with vq on Γint and Equa-
tion (3) tested with vp on the entire boundary Γ, one



obtains the system

∫

Γint

vq(V qint)(x) dsx −

∫

Γint

vq(Kp̃)(x) dsx

+

∫

Γint

vq

[

−
1

2
pint(x) − (Kpint)(x)

]

dsx

+

∫

Γint

vq
[
pint(x) − λ(x)

]
dsx = −

∫

Γint

vq(V q̄)(x) dsx , (4)

∫

Γ

vp(Dpint)(x) dsx +

∫

Γ

vp(Dp̃)(x) dsx

+

∫

Γ

vp

[

−
1

2
qint(x) + (K ′qint)(x)

]

dsx

=

∫

Γ

vp

[
1

2
q̄(x) − (K ′q̄)(x)

]

dsx . (5)

The term pint(x) − λ(x) in Equation (4) was introduced
to enforce equilibrium on the interface. Continuity is
enforced by

∫

Γint

vλ
(
ρ0ω

2w + qint
)

dsx = 0 . (6)

Discretizing plate equation (1), fluid equations (4), (5)
and continuity equation (6), one obtains the system of
equations
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2
∫

Γint ϕwfe dsx

−
∫

Γint ϕq(V q̄)(x) dsx∫

Γ
ϕp

[
1

2
q̄(x) − (K′q̄)(x)

]
dsx

0







. (7)

For the solution of the system (7) an approximate Uzawa type
algorithm is employed. GMRES iterations are performed on
the reduced equation for the Lagrange multiplier λ. The in-
verse of the FEM matrix is approximated by conjugate gradi-
ent iterations, while the BEM Dirichlet-Neumann map for the
acoustic domain is evaluated using inner GMRES iterations.
Special attention must be paid to the preconditioning of the
sub-systems. Standard diagonal scaling already reduces the
required iterations significantly, but in particular for the plate
system adopted techniques should be employed.

In the approximate Uzawa algorithm, matrix-vector products
of discretized boundary integral operators must be evaluated.
Using a standard BEM formulation, the computing time and
memory requirements are of order O(N2) and the method
is thus not feasible for large scale simulations. Using the
fast multipole BEM, the numerical cost can be reduced to
O(N log2 N). For a description of the multipole algorithm
and the fast realization of the boundary integral operators it
is referred to a paper by the authors [2].

Numerical Example
The proposed coupling algorithm is demonstrated on the ex-
ample of an acoustic cavity backed by an elastic panel. An an-

alytic series solution is used as a reference solution. The elas-
tic panel considered has the dimensions 1m×1m and a thick-
ness of t = 0.01 m. It is made from steel (E = 2.1×1011 N/m2,
ν = 0.3, ρ = 7900 kg/m3) and is simply supported on all
edges. The panel is coupled to a closed acoustic cavity with
dimensions 1 m×1m×1m. The remaining surfaces of the cav-
ity are reverberant walls, i.e. homogeneous Neumann bound-
ary conditions (q̄ = 0) are applied. The acoustic fluid is water
(c0 = 1481 m/s, ρ = 1000 kg/m3).

Figure 2 plots the frequency response at the point
(0.2 m, 0.3 m) on the plate due to a force of F = 1 N at the
same position. The FEM-BEM results computed using 316
boundary elements on the interface and 20 × 20 finite plate
elements agree completely with the series solution.
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Figure 2: Frequency response of coupled system.

To demonstrate the flexibility of the algorithm with respect
to mesh refinement in the sub-domains, the system is studied
at a frequency of f = 180 Hz with forcing by a single force
as before. The resulting displacement field is depicted in Fig-
ure 3. A rather fine FEM discretization is required for the
spatial resolution of the displacement field. Thus, the error
efluid
2 = ||pint

BEM − pint

series||2/||p
int

series||2 reduces quickly with FE
mesh refinement until the maximum accuracy for the chosen
fluid mesh is obtained (see Figure 3).
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Figure 3: Displacement field and fluid error efluid
2 at 180 Hz
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