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Introduction 
In underwater acoustics, the pressure field ωP  at a frequen-
cy πω2=f  is decomposed under the propagating modes as 
follows: 
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where M is the number of modes, R is the source-receiver 
range, and km is the wavenumber associated to mode m. For 
simplicity, we neglect the attenuation in the waveguide. 
Like in many high-resolution techniques, the data are issued 
from a towed source providing a horizontal synthetic 
aperture; for the nth position of the source given by 
R=R0+nd, we measure the corresponding pressure [ ]nPω  
received on the receiver. 
Replacing R in (1) by its expression, we obtain an 
equivalent formulation of (1) as 
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In this equation, we have M unknown amplitudes ma~  and 
M unknown phases zm. Consequently, we need at least 2M 
data points in order to solve this system. Using 2M data 
points, the problem can be seen as the inversion of a 2M-
equation system. This system is linear with respect to ma~ , 
but it is highly nonlinear with respect to zm. This 
nonlinearity makes the inversion difficult and highly 
sensitive to noise. 
The method we propose is similar to the Prony method and 
is based on the following steps: 
- we start from the first M equations of (2), and write the 

ma~  as a function of the data [ ]nPω  and phases zm, 
- we continue with the last M equations of (2), in which the 

ma~  are replaced by their expression. 
These two steps are symbolic manipulations of (2) ; there is 
no numerical treatment here. Of course, we obtain a system 
of M equations with M unknown phases zm, that is highly 
nonlinear. Anyway, we can show that this system is linear 
with respect to the Elementary Symmetric Polynomials 
defined by: 
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The next steps of our inversion algorithm are: 
- numerical inversion of this linear system and computation 
of the Em, 
- calculation of the phases zm as the complex roots of a 
polynomial of degree M, whose coefficients are the Em. 
The determination of the Em results from the inversion of a 
linear system ; thus there is no particular difficulty here in 
the numerical implementation. Then the final resolution 
step reduces to the search of the roots of a polynomial, 

which can be performed from multiple and stable numerical 
algorithms. In fact, the most complex step was the symbolic 
manipulations that were needed to obtain the last 
formulation given above. 
 
Representation of the multi-valued solutions 
As described in the two previous sections, our inversion 
method (with or without holographic array processing) 
yields the numerical determination of the phase variables 

( )dikz mm exp= . Now, the calculation of the corresponding 
km is not straightforward, even in the case of a well-known 
distance d. This is due to the fact that the phase of a 
complex number is known, up to a multiple of π2 . As an 
immediate consequence, the wavenumbers km are given by 

( ) πpzphasedk mm 2 += , (5)
where p can be any positive or negative integer. 
In order to find the exact wavenumbers, we take advantage 
of the large number of data points. Indeed, our inversion 
algorithm is performed from 2M data points, and we can 
choose multiple subsets of 2M equally points in the total 
aperture L covered by the moving source. We finally 
proceed in the following manner: 
- we choose d and a subset of 2M data points such that we 
have (2M-1)d<L, on which we run our inversion algorithm. 
- once the zm are known, we calculate all possible values of 
km inside a reasonable range, taking into account the multi-
valued solutions, 
- we restart the last two steps for all possible subsets of 
points for a given value of d, and also for different values of 
d if possible. 
The basic idea of this procedure is to cumulate the multi-
valued wavenumbers obtained from different subsets of 
data points, and draw a histogram of all possible solutions. 
For an effective solution, all individual histograms will 
have a peak at the same k-position, thus resulting in a 
cumulative high peak on the final result. For a non-
pertinent solution resulting from the multi-valuation, it will 
be spread along the k axis from one particular histogram to 
another one, and we do not expect to see any peak in this 
case. 
As a matter of fact, a strong peak detection on the final 
histogram allows to separate the actual solution from virtual 
solutions that result from multi-valuation. 
 
Numerical results 
Data are obtained from a numerical simulation in a 60-m 
deep Pekeris waveguide using the Kraken normal mode 
code at a frequency of 200 Hz. The bottom sound speed, 
density and attenuation are 2000 m/s, 2000 kg/m3 and 0.1 
dB/λ . The source is towed away from the receiver on a 
total aperture L=1500 m with an initial distance to the 
receiver R0=3000 m; the depth of the source is 15 m. The 
water sound speed and density are 1500 m/s and 1000 
kg/m3.  



 

Fig.1 shows a typical cumulative histogram obtained from 
our inversion technique with a single receiver in the 
absence of noise. The sharp peaks correspond to the actual 
modes in the waveguide, in the range [0.55 m-1-0.95 m-1]. 
The portion of the histogram between 0.85 and 0.95 m-1 
gives us an estimation of the average noise level resulting 
from the multi-valuation treatment. We then define a 
threshold with respect to this average noise level in order to 
detect the peaks in the histogram. 
In Fig. 1, we clearly identify 11 different peaks that rise 
high above the average noise level. These different peaks 
correspond to the actual wavenumbers of the waveguide. 
In Fig. 2, random white noise is added on the simulated 
data points (SNR=20 dB). Comparing Figs. 1 and 2, we see 
that the detection of modes is more difficult in the presence 
of noise; the average noise level does not change between 
the different figures, but the height of the peaks decreases 
as noise increases. Some peaks are no more detected, and 
the two highest modes can not be distinguished, as in Fig. 
1. If we use a detection based on a threshold compared to 
the average noise level, we can expect that some modes are 
missed in the case of a highly noisy propagation in the 
waveguide. 
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Figure 1: typical cumulative histogram without noise. 

 
Cumulative histogram - random noise, 20 dB SNR
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Figure 2: same as figure 1, with a random white noise, 20 

dB SNR. 
 
Modal dispersion curves in the ocean 
 
In the previous sections, we considered only mono-
chromatic signals at the frequency of 200 Hz. The 
simulated data points have been calculated using a single-
frequency propagation model. 
We investigate now the case of broadband signals received 
from a horizontal synthetic aperture. To do so, the previous 
inversion procedure is repeated for all the frequencies that 

are effectively present in the temporal signals received on 
the array. This yields a series of wavenumbers for each 
frequency that can be represented in the ( )fk,  space to 
obtain the modal dispersion curves of the waveguide. These 
dispersion curves are very important because they contain 
much information about the physical properties of the 
waveguide and bottom. 
In practice, the simulated data points are now obtained from 
a transient propagation model based on the Kraken normal 
mode code. The central frequency is 200 Hz, and the 
effective bandwidth is in the range [175-225 Hz]. The 
computation of the dispersion curves has been limited to 
this frequency range. The length of the horizontal aperture 
L=1500 m is the same as before. 
Figs. 3a and 3b show the modal dispersion curves obtained 
in the absence of noise and in the case of a 20-dB SNR, 
respectively. On these two figures, we see the classical 
structure of the dispersion curves in the waveguide, and the 
degradation due to the presence of noise. 
 
Conclusion 
In this work, we have presented a numerical procedure to 
calculate the propagating wavenumbers in a waveguide, 
and the resulting dispersion curves. These results may be 
useful in underwater acoustics, since dispersion curves 
contain information about the waveguide properties. 
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Figure 3a: dispersion curves without noise. 

Modal dispersion curves - random noise, 20 dB SNR

0.55 0.65 0.75 0.85 0.95
k (1/m)

175 

185 

195 

205 

215 

225 
Frequency (Hz)

 
Figure 3b: dispersion curves with a 20-dB SNR. 


