Modal Dispersion Curves in the Ocean

D. Cassereau’, P. Roux®, and F.-D. Philippe*

* Laboratoire Ondes et Acoustique, Université Paris 7 - CNRS UMR 7587 - ESPCI, Paris, FRANCE
® Marine Physical Laboratory - Scripps Institution of Oceanography, La Jolla, U.S.A.
didier.cassereau@espci.fr

Introduction
In underwater acoustics, the pressure field P, at a frequen-

cy f =2mw is decomposed under the propagating modes as
follows:

M
P,(R)=>a, explik,R), (1)
m=1
where M is the number of modes, R is the source-receiver
range, and k,, is the wavenumber associated to mode m. For
simplicity, we neglect the attenuation in the waveguide.
Like in many high-resolution techniques, the data are issued
from a towed source providing a horizontal synthetic
aperture; for the n™ position of the source given by
R=Rytnd, we measure the corresponding pressure Pw[n]

received on the receiver.
Replacing R in (1) by its expression, we obtain an
equivalent formulation of (1) as

M
P, [n]= zamz; ,with z, = exp(ikmd). )
m=1

In this equation, we have M unknown amplitudes a, and

M unknown phases z,. Consequently, we need at least 2M
data points in order to solve this system. Using 2M data
points, the problem can be seen as the inversion of a 2M-
equation system. This system is linear with respect to a,, ,

but it is highly nonlinear with respect to z,. This
nonlinearity makes the inversion difficult and highly
sensitive to noise.

The method we propose is similar to the Prony method and
is based on the following steps:

- we start from the first M equations of (2), and write the
a, as a function of the data P, [n] and phases z,,

- we continue with the last M equations of (2), in which the
a, are replaced by their expression.

These two steps are symbolic manipulations of (2) ; there is
no numerical treatment here. Of course, we obtain a system
of M equations with M unknown phases z,, that is highly
nonlinear. Anyway, we can show that this system is linear

with respect to the Elementary Symmetric Polynomials
defined by:

M MM
E =ZZ;:E2 =Z ZZiZj, LE, =
i1

i=l j=i+l i

Zi - “4)

The next steps of our inversion algorithm are:

- numerical inversion of this linear system and computation
of the E,,,

- calculation of the phases z, as the complex roots of a
polynomial of degree M, whose coefficients are the E,,.

The determination of the E,, results from the inversion of a
linear system ; thus there is no particular difficulty here in
the numerical implementation. Then the final resolution
step reduces to the search of the roots of a polynomial,

which can be performed from multiple and stable numerical
algorithms. In fact, the most complex step was the symbolic
manipulations that were needed to obtain the last
formulation given above.

Representation of the multi-valued solutions

As described in the two previous sections, our inversion
method (with or without holographic array processing)
yields the numerical determination of the phase variables
z, = exp(ikmd ) Now, the calculation of the corresponding

k. 1s not straightforward, even in the case of a well-known
distance d. This is due to the fact that the phase of a
complex number is known, up to a multiple of 27 . As an
immediate consequence, the wavenumbers £, are given by
k,d = phase(z, )+ 2pm ®)
where p can be any positive or negative integer.
In order to find the exact wavenumbers, we take advantage
of the large number of data points. Indeed, our inversion
algorithm is performed from 2M data points, and we can
choose multiple subsets of 2M equally points in the total
aperture L covered by the moving source. We finally
proceed in the following manner:
- we choose d and a subset of 2M data points such that we
have (2M-1)d<L, on which we run our inversion algorithm.
- once the z,, are known, we calculate all possible values of
k,, inside a reasonable range, taking into account the multi-
valued solutions,
- we restart the last two steps for all possible subsets of
points for a given value of @, and also for different values of
d if possible.
The basic idea of this procedure is to cumulate the multi-
valued wavenumbers obtained from different subsets of
data points, and draw a histogram of all possible solutions.
For an effective solution, all individual histograms will
have a peak at the same k-position, thus resulting in a
cumulative high peak on the final result. For a non-
pertinent solution resulting from the multi-valuation, it will
be spread along the & axis from one particular histogram to
another one, and we do not expect to see any peak in this
case.
As a matter of fact, a strong peak detection on the final
histogram allows to separate the actual solution from virtual
solutions that result from multi-valuation.

Numerical results

Data are obtained from a numerical simulation in a 60-m
deep Pekeris waveguide using the Kraken normal mode
code at a frequency of 200 Hz. The bottom sound speed,
density and attenuation are 2000 m/s, 2000 kg/m® and 0.1
dB/A . The source is towed away from the receiver on a
total aperture L=1500 m with an initial distance to the
receiver Ry=3000 m; the depth of the source is 15 m. The
water sound speed and density are 1500 m/s and 1000
kg/m’.



Fig.1 shows a typical cumulative histogram obtained from
our inversion technique with a single receiver in the
absence of noise. The sharp peaks correspond to the actual
modes in the waveguide, in the range [0.55 m™”-0.95 m™].
The portion of the histogram between 0.85 and 0.95 m’
gives us an estimation of the average noise level resulting
from the multi-valuation treatment. We then define a
threshold with respect to this average noise level in order to
detect the peaks in the histogram.

In Fig. 1, we clearly identify 11 different peaks that rise
high above the average noise level. These different peaks
correspond to the actual wavenumbers of the waveguide.

In Fig. 2, random white noise is added on the simulated
data points (SNR=20 dB). Comparing Figs. 1 and 2, we see
that the detection of modes is more difficult in the presence
of noise; the average noise level does not change between
the different figures, but the height of the peaks decreases
as noise increases. Some peaks are no more detected, and
the two highest modes can not be distinguished, as in Fig.
1. If we use a detection based on a threshold compared to
the average noise level, we can expect that some modes are
missed in the case of a highly noisy propagation in the

waveguide.
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Figure 1: typical cumulative histogram without noise.

Cumulative histogram - random noise, 20 dB SNR
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Figure 2: same as figure 1, with a random white noise, 20
dB SNR.

Modal dispersion curves in the ocean

In the previous sections, we considered only mono-
chromatic signals at the frequency of 200 Hz. The
simulated data points have been calculated using a single-
frequency propagation model.

We investigate now the case of broadband signals received
from a horizontal synthetic aperture. To do so, the previous
inversion procedure is repeated for all the frequencies that

are effectively present in the temporal signals received on
the array. This yields a series of wavenumbers for each
frequency that can be represented in the (k, f ) space to

obtain the modal dispersion curves of the waveguide. These
dispersion curves are very important because they contain
much information about the physical properties of the
waveguide and bottom.

In practice, the simulated data points are now obtained from
a transient propagation model based on the Kraken normal
mode code. The central frequency is 200 Hz, and the
effective bandwidth is in the range [175-225 Hz]. The
computation of the dispersion curves has been limited to
this frequency range. The length of the horizontal aperture
L=1500 m is the same as before.

Figs. 3a and 3b show the modal dispersion curves obtained
in the absence of noise and in the case of a 20-dB SNR,
respectively. On these two figures, we see the classical
structure of the dispersion curves in the waveguide, and the
degradation due to the presence of noise.

Conclusion

In this work, we have presented a numerical procedure to
calculate the propagating wavenumbers in a waveguide,
and the resulting dispersion curves. These results may be
useful in underwater acoustics, since dispersion curves
contain information about the waveguide properties.

Modal dispersion curves - no noise
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Figure 3a: dispersion curves without noise.

Modal dispersion curves - random noise, 20 dB SNR
Frequency (Hz)
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Figure 3b: dispersion curves with a 20-dB SNR.



