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The objective of the paper is to obtain the frequency response curves of nonlinear mechanical systems from

broadband testing. The proposed approach consists in coupling an identification method with a continuation

method. Specifically, the frequency-domain nonlinear subspace identification (FNSI) method is first used to derive

an experimental model of the structure in state-space from broadband measurements. The harmonic balance

method coupled with arclength continuation then utilizes this experimental model to compute the frequency

response curves of the system. The method is demonstrated using a numerical example.

1 Introduction
Nonlinear dynamical systems may exhibit complex

behavior such as bifurcations, jump phenomenon or

sensitivity to motion amplitude. When investigated using

linear system identification method, these dynamical

phenomena can be erroneously interpreted and lead to an

inaccurate model.

Because nonlinearity is a frequent occurrence in

engineering structures, there is a need for embedded

methods that can be used to characterize the nonlinear

behavior of a structure from experimental data [1].

Among existing identification methods, subspace

methods, developed for linear system identification [2, 3],

are able to deal with multiple-input, multiple-output systems,

and were successfully applied to real-life applications [4].

Thanks to the feedback interpretation of nonlinear structural

dynamics [5], Marchesiello and Garibaldi proposed a

time-domain nonlinear subspace identification (TNSI)

method able to estimate the frequency response functions

(FRFs) of the underlying linear system as well as the

nonlinear coefficients [6]. It was shown that the method is

sufficiently robust to identify appropriate nonlinear behavior

from a set of basis functions. Later a frequency-domain

version of the method, termed FNSI, was introduced

[7]. Frequency-domain approaches are useful to reduce

computational burden by selecting appropriate frequency

bands in the response spectrum for identification. For greater

flexibility allowing identification of complex nonlinearity,

nonlinear basis functions were replaced by cubic splines

and the method was applied to the identification of bolted

connections of a solar array panel [8].

The previous mentioned references aim at characterizing

nonlinear systems using input-output data. The identified

model is in the state-space form and the estimated matrices

cannot be directly related to the system physical mass,

damping and stiffness matrices. Therefore, as pointed out by

Ewins et al., there is a need for a simulation tool to simulate

directly the estimated model in the state-space frequency

domain [9].

Different algorithms for the computation of periodic

solutions and bifurcations of nonlinear structures can be

found in the literature. Most of them rely on a continuation

procedure to track periodic solutions along branches with

respect to a control parameter (frequency of excitation

or a system parameter) [10]. Among all the methods for

computing periodic solutions in frequency domain, the

harmonic balance (HB) method is arguably the most used.

The periodic signals are approximated by their Fourier

coefficients, which become the new unknowns of the

problem.

Random FNSI State space
model

Continuation

Nonlinear frequency
response curve

Figure 1: Diagram of the system identification methodology

as addressed in the present paper.

This method was applied to several industrial cases

such as rotor-stator contact problems in turbo-machinery

[11], or to large-scale structures such as the nonlinear

behavior of a full-scale vehicle [12]. Recently, the harmonic

balance method was used for the detection and tracking of

codimension-1 bifurcations and applied to the analysis of

the SmallSat spacecraft [13].

In this paper, an embedded approach coupling the

FNSI method with a state-space harmonic-balance based

continuation method is proposed and summarized in Fig. 1.

2 Frequency-domain nonlinear
subspace identification

In this section, the frequency nonlinear subspace

identification method (FNSI) is briefly recalled [7].

2.1 Identification problem formulation
The behavior of a mechanical system with discrete

nonlinearities may be described by the following equation

of motion

Mq̈(t) +Cq̇(t) + Kq(t) + f (q(t), q̇(t)) = p(t) (1)

where M,C,K ∈ R
r×r are the linear mass, viscous damping

and stiffness matrices, q(t), p(t) ∈ R
r are the generalized

displacement and external force vectors, respectively. f (t) ∈
R

r is the nonlinear restoring force vector. The effect of the s
lumped nonlinearities is expressed as

f (q(t), q̇(t)) =
s∑

j=1

μ jb jg j(q(t), q̇(t)) (2)

where μ j are the nonlinear coefficients, b j ∈ R
r is a

Boolean vector indicating the location of the nonlinearity

and g j(q(t), q̇(t)) is the nonlinear functional form. Defining

the state vector x = [qT , q̇T ]T ∈ R
n (n = 2r), system (1) is

rewritten in state-space form as

ẋ(t) = Acx(t) + Bce(p(t), q(t), q̇(t))
q(t) = Cx(t) + De(p(t), q(t), q̇(t)) (3)
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here, the subscript c stands for continuous time.

e(t) = [p(t)T , g1(t), . . . , gs(t)]T ∈ R
r+s is the extended

input vector which comes from the feedback interpretation

of the nonlinear terms [7]. State-space matrices Ac ∈ R
n×n,

Bc ∈ Rn×(r+s), C ∈ Rr×n, D ∈ Rr×(r+s) are related to physical

matrices as

Ac =

[
0r×r Ir×r

−M−1K −M−1C

]
, Bc =

[
0r×r . . . 0r×1

M−1 . . . −μsM−1bs

]

(4)

C =
[
Ir×r 0r×r

]
, D = 0r×(r+s)

In order to reduce computational burden, the

identification is performed in frequency domain. For

improved numerical conditioning, a discrete-time translation

is considered [6] before applying the discrete Fourier

transform to system (3)

zkX(k) = AdX(k) + BdE(k)

Q(k) = CX(k) + DE(k)
(5)

where zk = e2 jπk/Ns , Ns is the number of recorded samples

in the time series. Knowing the extended input E and output

Q, we want to determine the order of the system n and the

system matrices Ad, Bd, C end D.

2.2 The outuput-state-input equation
In practical applications, only limited sets of degrees of

freedom (DOFs) in p(t) and q(t) are excited and observed,

respectively. Therefore, the problem is preferably stated

in terms of measured applied forces u(t) ∈ R
m≤r and

displacements y(t) ∈ R
l≤r, so that e(t) ∈ R

s+m. Equation (5)

is rewritten as

zkX(k) = AdX(k) + Be
dE(k)

Y(k) = CdX(k) + De
dE(k)

(6)

where Y(k) is the discrete Fourier transform of y(t) and

the state-space matrices are now projections of the original

matrices onto the observed and controlled DOFs. In what

follows, the subscript d is dropped for brevity. The measured

input and output spectra are arranged in block Hankel

matrices

Yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y(1) Y(2) . . . Y(N)

z1Y(1) z2Y(2) . . . zNY(N)

z2
1Y(1) z2

2Y(2) . . . z2
NY(N)

...
...

. . .
...

zi−1
1

Y(1) zi−1
2

Y(2) . . . zi−1
N Y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rli×N (7)

where i is a user-defined index which must be chosen to

encompass sufficient information to identify the system.

N is the number of non-necessary equidistant frequency

lines taken for the identification procedure. The extended

observability matrix Γi and the lower block Toeplitz matrix

Hi are defined as

Γi =
[
CT CAT CA2T

. . . CAi−1T
]T

Hi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

De 0 0 . . . 0

CBe De 0 . . . 0

CABe CBe De . . . 0
...

...
...

. . .
...

CAi−2Be CAi−3Be CAi−4Be . . . De

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

By making recursive use of Eq. (6), the output-state-input

matrix equation is obtained

Yi = ΓiX + HiEi (9)

here X ∈ Rn×N is the state spectrum.

2.3 Estimation of the state matrices and the
order of the system

The subspace identification method can now be applied

to (9) to determine the order of the system and the matrices

of the state-space system (6). The algorithm consists of two

main steps.

• First, the term depending on the input and the

nonlinearities, namely HiEi is eliminated. This task

is achieved through an orthogonal projection onto the

orthogonal complement of Ei. Then, a singular value

decomposition (SVD) of the result of the projection is

performed. The order of the system and the estimated

extended observability matrix are determined from the

result of the SVD.

• The next step consist in computing the matrices of

the state-space system. Matrices A and C are easily

computed by making use of the shift property of Γi.

The procedure for computing matrices B and D is

discussed in [7] (or in [2] for a general presentation of

subspace-based identification methods).

Note that the state-space matrices are obtained only within a

similarity transformation matrix T , so that

Ac = T ÂcT−1, Bc = T B̂c, C = ĈT−1, D = D̂ (10)

It is possible to define a similarity transformation matrix to

express the identified matrices in the physical state-space

domain (i.e. x = [qT , q̇T ]T ). Using Eq. (10), the problem is

formulated as follows

T Âc =

[
T1 T2

T3 T4

] [
A1 A2

A3 A4

]
=

[
0r×r Ir×r

−M−1K −M−1C

] [
T1 T2

T3 T4

]

Ĉ =
[
C1 C2

]
=
[
Ir×r 0r×r

] [T1 T2

T3 T4

]

(11)

which gives

T1A1 + T2A3 = T3

T1A2 + T2A4 = T4

C1 = T1

C2 = T2

(12)

Therefore the obtained similarity transformation matrix

reads

T =
[

Ĉ
ĈÂc

]
(13)

Usually, a last procedure to compute the nonlinear

coefficients μ j from the estimated matrices is performed.

However, this step is not necessary for the continuation

procedure.
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3 Harmonic balance-based continuation
method

In this section, the computation of the periodic solutions

using the harmonic balance method is presented.

3.1 Harmonic balance formulation
The harmonic balance method is applied directly to the

state-space system (3), where the state-space matrices are

those obtained using the FNSI method (Âc, B̂c, Ĉ and D̂). In

what follows, hats are dropped for simplicity of notation. The

state, output and input variables are approximated by Fourier

series truncated to the N − th harmonic

x(t) =
X0√

2
+
∑N

j=1 Xc j cos(k jθ) + Xs j sin(k jθ)

q(t) =
Q0√

2
+
∑N

j=1 Qc j cos(k jθ) + Qs j sin(k jθ)

e(t) =
E0√

2
+
∑N

j=1 Ec j cos(k jθ) + Es j sin(k jθ)

(14)

where θ = ωt, ω is the pulsation of excitation. Qc j and Qs j

are the unknown Fourier coefficients related to the cosine and

sine terms, respectively. Note that the Fourier coefficients

of e(t) depends on the Fourier coefficients of q(t) due to the

nonlinear basis functions g j. k ∈ RN is the vector containing

the different harmonics. The Fourier coefficients are gathered

into vectors as follows

Q =
[
Q0 Qc1 Qs1 . . . QcN QsN

]
∈ R(2N+1)l

X =
[
X0 Xc1 Xs1 . . . XcN XsN

]
∈ R(2N+1)n

E =
[
E0 Ec1 Es1 . . . EcN EsN

]
∈ R(2N+1)(s+m)

(15)

Using (15), the variables are rewritten in compact form as

follows

x(t) = (T (θ) ⊗ In)X
q(t) = (T (θ) ⊗ Il)Q
e(t) = (T (θ) ⊗ Is+m)E

(16)

where T (θ) is a vector gathering the trigonometric functions

as

T (θ) =

[
1√
2

cos(k1θ) sin(k1θ) . . . cos(kNθ) sin(kNθ)

]
∈ R(2N+1)

(17)

The time derivative of x(t) can be written using a linear

operator as

dx
dt
= ω

d
dθ
= ω

(
dT (θ)

dθ
⊗ In

)
X = ω[(T (θ)∇) ⊗ In]X (18)

with

∇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∇1

. . .

∇N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with ∇ j =

[
0 k j

−k j 0

]
(19)

Substituting Eqs. (16,18) into (3) and applying a Galerkin

procedure gives

ω(∇ ⊗ In)X = (I(2N+1) ⊗ Ac)X + (I(2N+1) ⊗ Bc)E
Q = (I(2N+1) ⊗C)X + (I(2N+1) ⊗ D)E (20)

Rearranging, the following residue equation is obtained

h(Q, ω) ≡ Q −G(ω)E(Q) = 0 (21)

with

G(ω) = (I(2N+1) ⊗C)Λ−1(I(2N+1) ⊗ Bc) + (I(2N+1) ⊗ D)

Λ = ω(∇ ⊗ In) − (I(2N+1) ⊗ Ac)
(22)

The Fourier coefficients of the nonlinear terms are computed

using alternating-time-frequency method (AFT) [14], that

takes advantage of the fast Fourier transform to compute E

Q
FFT−1

−−−−−→ q(t)→ e(p(t), q(t), q̇(t))
FFT−−−→ E (23)

3.2 Continuation of periodic solutions
In order to track a branch of periodic solutions, a

predictor-corrector method based on pseudo-arclength

parametrization is used. Denoting JQ and Jω the Jacobian

matrices with respect to Q and ω, respectively, the tangent

vector t(i) at a point (Q(i−1), ω(i−1)) along the branch reads

[
JQ Jω

tT
(i−1)

]
t(i) =

[
0

1

]
(24)

The last equation from (24) prevents the continuation

procedure from turning back. The tangent vector is used to

compute a prediction for the next step (Q(0)
(i) , ω

(0)
(i) ) using the

step length δs. Generally, the predicted value does not satisfy

Eq. (21). Therefore, a correction stage based on Newton’s

method is performed. In order to be able to deal with turning

points, we seek corrections in a direction orthogonal to the

tangent vector

[
JQ Jω

tT
(i)

] [
ΔQ(k+1)

Δω(k+1)

]
=

[−h(Q(k)
(i) , ω

(k)
(i) )

0

]
(25)

with Q(k+1)
(i) = Q(k)

(i) + ΔQ(k+1), ω(k+1)
(i) = ω(k)

(i) + Δω
(k+1).

Corrections are performed until the convergence criterion is

satisfied.

4 Numerical example
In this section, a numerical application of the method

based on synthetic data is presented. The studied

system consists of two coupled Duffing oscillators. The

corresponding equations of motion are given by

q̈1(t) + cq̇1(t) + kq1(t) + μ1q1(t)3 + d(q1(t) − q2(t)) = p(t)
q̈2(t) + cq̇2(t) + kq2(t) + μ2q2(t)3 + d(q2(t) − q1(t)) = 0

(26)

From Eq. (26), the nonlinearities are defined by the

nonlinear coefficients μi, gi = qi(t)3 (i = 1, 2), b1 = [1, 0]T

and b2 = [0, 1]T . Therefore, the extended input vector reads

e(t) = [p(t), 0, q1(t)3, q2(t)3]T . The first mass is excited by

a single band-limited (0 − 80rad/s), normally-distributed

random signal (5000 points) repeated 8 times. Its root-mean-

square (r.m.s.) value is equal to 3N. Numerical integration
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of the equations of motion was performed using fourth-order

Runge-Kutta method. The last 5000 points of the result of

the numerical integration, resampled at 200rad/s, are used

as input to generate the extended input vector. Remark that

the input band was chosen to encompass the third harmonic

of the highest natural frequency. The model order n = 4

is determined from the inspection of the singular value

plot depicted in Fig. 2 with i = 40 block rows. A jump of

four orders of magnitude between model order four and

five is observed. Also, as shown in Fig. 2, an excellent

agreement between the theoretical and identified FRFs of

the underlying linear system is obtained.

Fig. 3 displays the complex and frequency-dependent

estimation of the nonlinear coefficients determined from

the extended FRF [6]. Note that this step is unnecessary

for the continuation procedure and only serves as an

indicator of the quality of the identification. Indeed, a

correctly estimated system should lead to an almost constant

nonlinear coefficient over the frequency range of interest and

an imaginary part several orders of magnitude lower than the

real part. In this case, a variation of less than 1% of the real

part of the nonlinear coefficients in the frequency range of

interest is observed. The imaginary parts are three and four

orders of magnitude lower that the real parts for the first and

second nonlinear coefficient, respectively.

The identified Bc matrix in the physical state-space

domain, denoted B̃c, computed using Eq. (10,13) yields

B̃c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.016 0 0.016 0

0 0 0 0.016

0.997 0 0.998 0

0 0 0 0.998

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

The values of the nonlinear coefficients are close to the

original model in Eq. (4). However, the structure of B̃c is not

conform with the theoretical expectation, since undesired

terms that are approximatively two orders of magnitude

smaller than the nonlinear and the forcing coefficients

are present in the first block row of B̃c. The effect of

these undesired terms can be apprehended by rewriting the

identified physical state-space model into the physical space.

The identified system reads

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−k̃ − d̃ d̃ −c̃ 0

d̃ −k̃ − d̃ 0 −c̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1 0 B2 0

0 0 0 B3

μ̃ f 0 μ̃1 0

0 0 0 μ̃2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p
0

q3
1

q3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

where the tildes denote the coefficients identified using the

FNSI method and expressed in the physical state-space

domain. The terms Bi (i = 1..3) denote the undesired terms

of the B̃c matrix. Using the matrix C (which is the exact due

to (11)), the reconstructed model in the physical-domain is

written by

q̈1 + c̃q̇1 + k̃q1 + μ̃1q3
1
+ d̃(q1 − q2) − 3B2q2

1q̇1 = μ̃ f p(t) + B1 ṗ(t)
q̈2 + c̃q̇2 + k̃q2 + μ̃2q3

2
+ d̃(q2 − q1) − 3B3q2

2q̇2 = 0
(29)

It is seen that the term B1 modifies the excitation while

the terms B2 and B3 constitute spurious nonlinearities

corresponding to Van der Pol damping added to the

identified model. These terms are conform with the assumed

nonlinear basis functions and must be forced to zero in order

to recover a coherent identified system.

The result of the numerical continuation is depicted

in Fig. 4 for a forcing amplitude of 2N. Solid and dotted

lines correspond to stable and unstable periodic responses,

respectively. Black and blue lines correspond to the

theoretical and identified frequency response curves of the

system, respectively. The circles and the squares represent

fold and Neimark-Sacker bifurcations, respectively. Both

responses of the theoretical and identified models were

obtained using the continuation procedure. The frequency

response curve of the identified model without and with

the undesired terms Bi are depicted in the left and the right

graph, respectively.

The frequency response curve of the identified model when

the spurious terms (termed FNSI updated) were removed

matches almost exactly the theoretical predictions. Both fold

and Neimark-Sacker bifurcations are identified in agreement

with the theoretical prediction. On the contrary, as observed

on the right plot, even if these spurious terms are small

compared to the identified nonlinear coefficients, they lead

to strongly erroneous results and therefore must be removed

from B̃c.

5 Conclusion
In this paper, an algorithm coupling the frequency

nonlinear subspace identification method and a harmonic

balance based continuation method for the simulation was

presented. The objective of this procedure is to obtain the

nonlinear frequency response curves of a nonlinear system

directly from random measurements.

Since the identification procedure is carried out in the

state-space domain, the simulation is also performed in the

state-space domain, which prevents from reconstructing

the identified model in physical space. An expression

of the similarity transformation matrix which allows the

identification of spurious nonlinearity was presented. The

method was tested on a numerical application with a two-

degree-of-freedom Duffing oscillator. The theoretical and

identified frequency response curves are in good agreement.

The nature and location of the bifurcations is also recovered.

The origin of the spurious terms in the identified matrix Bc

has not yet been identified, and will be the object of further

work.
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Figure 2: Left : plot of the first twenty singular values with i = 40. Right : theoretical (grey dotted line) and identified (black

solid line) FRFs of the underlying linear system.
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Figure 3: Real and imaginary parts of the estimated nonlinear coefficients μ1 and μ2.
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Figure 4: Frequency response curves of the theoretical (black) and identified model (blue). Left: updated FNSI model. Right:

original FNSI model.
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