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The tuning of mallet bar instruments, such as vibraphones and marimbas, is usually based on the carving of the bar
profile, a manufacturing process which is oftenly performed on the basis of empirical knowledge even today. In
practice, the removal of material from a bar modifies both the inertia and stiffness characteristics of its vibrational
modes, and this provides one possible strategy for adjusting the modal frequencies of the first partials in relation
to a given fundamental. The relevant aspect of this work is to propose a new methodology for the multi-modal
tuning of bar instruments, which combines structural modifications and optimization techniques, with the virtue
of being non-destructive. The idea is to constrain the original dynamics of the bar by adding point masses, which
change the modal frequencies of the original system according to a target tuning. This leads to address a problem
of optimization, aiming at defining the characteristics of the correcting masses, i.e their masses and respective
positions. In practice, it becomes viable not only to correct the tuning deficiencies of existing bars, but also to
change their timbre, or even to finely tune plain bars with constant cross-section. The modeling approach includes
Finite-Element modeling of the bar constrained locally by the masses, as well a reduced-order model based on
a modal formulation. The comparison betwen the numerical and experimental results attests the validity and the
feasability of the proposed tuning approach, which appears as a pratical solution towards the design of mallet bar
instruments with predefined timbral features.

1 Introduction
The tonal quality of a struck bar is strongly dependent

on the frequency ratios of its lowest order flexural modes
[1, 2]. For a bar with uniform cross-section, these modes
fall in inharmonic frequency relationships, and thus leads
to an ambiguous definition of the pitch of the musical tone.
Bar tuners have attempted to develop methods to adjust the
frequencies of the first partials in order to approximate them
to harmonic series, typically in the frequency ratios 1:4:10 or
1:3:9. Currently, these methods are classically based on the
removal of material from the bar using precision machining
tools, which physically change the mass and stiffness
properties along the bar, and thus ultimately alter the modal
frequencies. Mainly based on empirical knowledge acquired
through trial and error procedures, this is not only a sensitive
task which requires high levels of specialisation, but also is
often costly and inefficient for manufacturers.

Although in recent years, backed by the exponential
growth in computers performance, researchers have
made significant advances in improving these methods
[1, 2, 3, 4, 5, 6], the common practical approach still consists
in the removal of bar material, a destructive process which
irreversibly alters the bar profile. A different approach to
the problem has also been proposed in [7] by using active
control techniques. In this paper, we propose an original
non-destructive method to address the tuning problem by
adding to the bar, at specific locations, suitably designed
masses. The positions and values of these tuning masses
are determined by combining physical modeling techniques
with optimization strategies, and as such, it seems that
this approach has never been attempted, at least on a
scientific basis. The proposed methodology uses a modal
formulation of the bar constrained by discrete masses,
feeded by the modal properties of the original unconstrained
bar, stemming from a Timoshenko FEM beam model. The
modal approach is particularly suitable for the objective of
the work, as it provides a physical model with a reduced
number of degree-of-freedom, and consequently requires
small computational efforts for the optimization process.
Here, to predict the optimal mass values and respective
positions for achieving a given tuning, we implement a
deterministic local optimization strategy and minimize a
multivariable error function. Although these techniques are
rather straightforward computationally, they are however
prone to get stuck in a local minimum, and for that reason,

some strategies have been developed in order to alleviate
this problem. Two applications are then illustrated: (1) to
correct a badly tuned vibraphone bar; (2) to tune an uniform
cross-section aluminium bar.

Finally, the validation of the results through experiments
allow to assess the adequacy and feasibility of the proposed
tuning method. This provides encouraging results towards
the development of reversible tuning strategies for mallet bar
instruments.

2 Physical modeling of the bar
dynamics

In order to predict the behaviour of the bar loaded with
discrete masses, a constrained modal formulation of the
system dynamics was used. As previously mentioned, this
formulation was built from the modal properties of the
unconstrained bar (without masses) computed through FEM.

2.1 Modal properties of the bar without
tuning masses computed through FEM

Due to the geometry of the bars addressed here, we used
the Timoshenko beam model which accounts for both the
shear deformation and the rotary inertia effects. The coupling
of this effects makes it suitable for describing the dynamical
behaviour of thick bars with variable cross-section. The
governing equations are given by [8]:

ρA(x)
∂2Y
∂t2 + kGA(x)

(
∂Φ

∂x
−
∂2Y
∂x2

)
= 0, (1)

ρI(x)
∂2Φ

∂t2 − EI(x)
∂2Φ

∂x2 + kGA(x)
(
Φ −

∂Y
∂x

)
= 0, (2)

where Y(x, t) is the flexural motion, Φ(x, t) is the slope of
the cross-section due to bending, ρ is the density of the bar
material, A(x) = BH(x) is the cross-sectional area of the
bar, k is the adjustment coefficient for the shear force, G is
the shear modulus, I(x) =

BH(x)3

12 is the bar flexural moment
of inertia and E is the Young modulus. Finite element
discretization of Eq. (1) and (2) enables the computation
of the elementary stiffness and mass matrices, which after
assembling lead to the dynamical formulation of the model
of the bar without additional masses (referred as to the
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original system). In terms of the physical coordinates, the
bar transverse motion is given by:

[Mos]{Ÿ(x, t)} + [Kos]{Y(x, t)} = {0}. (3)

where [Mos] and [Kos] are the global mass and stiffness
matrices of the original system and {Y} is the vector of
physical displacements. From Eq. (3), by assuming
harmonic solutions of the form:

{Y(t)} = {ϕm}exp(iωmt), (4)

and solving the generalized eigenvalue problem:(
− ω2

m[Mos] + [Kos]
)
{ϕm} = {0}, (5)

we can compute the modal frequencies of the original system
ωm and the corresponding modeshapes {ϕm}, to be used in the
subsequent modal formulation.

2.2 Modal-based modeling of the bar with
additional tuning masses

A physical model of the dynamics of the bar constrained
by additional point masses, can be represented through the
following formulation:

[Mos]{Ÿ(x, t)} + [Kos]{Y(x, t)} = −[Mad]{Ÿ(x, t)}, (6)

where [Mad] is the matrix of the additional point masses
mp, a diagonal matrix with the p-terms corresponding to the
locations of the additional masses, such that Mad(p, p) = mp.

However, given the number of iterations required
for the optimization process (see Section 3), a compact
modal formulation seems better suited for our aims as
it significantly reduces the number of equations, thus
demanding less computation efforts. This formulation
can be obtained by reformulating (6) using the coordinate
transformation:

{Y(x, t)} = [Φos(x)]{Q(t)}, (7)

where {Q(t)} is the vector of the modal amplitudes and
[Φos] = [{ϕos1}{ϕos2}, ..., {ϕosn}] is the modal matrix built
from the solutions of Eq. (5). Substituting (7) in (6), the
latter equation now reads as:

[Mos][Φos]{Q̈(t)}+[Kos][Φos]{Q(t)}=−[Mad][Φos]{Q̈(t)}, (8)

Then, pre-multiplying (8) by [Φos]T , and using the classical
orthogonality properties between the mode shapes, we obtain
the modal formulation:

[Mos]{Q̈(t)} + [Kos]{Q(t)} = −[Φos]T [Mad][Φos]{Q̈(t)}, (9)

where:
[Mos] = [Φos]T [Mos][Φos] (10)

[Kos] = [Φos]T [Kos][Φos], (11)

are the diagonal modal mass and modal stiffness matrices of
the original system respectively. From Eq. (9), we obtain:(

[Mos] + [Φos]T [Mad][Φos]
)
{Q̈(t)} + [Kos]{Q(t)} = 0, (12)

from which the bar modal frequencies ωm and modeshapes
{ϕm} can be computed by assuming harmonic modal
solutions as:

{Q(t)} = {ϕm}exp(iωmt), (13)

and solving the generalized eigenvalue problem for the mass-
loaded system:(
−ω2

m

(
[Mos] + [Φos]T [Mad][Φos]

)
+ [Kos]

)
{ϕm} = {0}. (14)

It is interesting to note that when we turn to the tuning
of real bars, one possibility is to use the actual modal
frequencies of the bar to be tuned, and thus compute the
stiffness matrix [Kos] using the values stemming from a
previous experimental modal identification, such as:

[Kos] = [Mos][ω2
exp], (15)

where [ω2
exp] = diag({ω2

1, ω
2
2, ..., ω

2
n}), with ωn = 2π fn the

angular frequency of mode index n obtained experimentally
on the original bar. Finally, notice that both formulations
(6) and (14) are equivalent but (14) is more compact as it
involves a reduced number of equations. This reduction
is particularly welcome for peforming easy and fast
computations, and largely compensates the effort for the
proposed approach.

3 Optimization strategies
Our optimization problem consists in finding, for

a given number n of masses, their optimal values
M∗n = {m∗1,m

∗
2, ...,m

∗
n}, (mn ≥ 0) and respective optimal

locations along the bar L∗n = {`∗1, `
∗
2, ..., `

∗
n} (0 ≤ `n ≤ L),

that minimize the differences between the modal frequencies
of the mistuned system and a predefined set of target
frequencies. To that end, we used a deterministic local
optimization approach [10] in order to minimize the
error-function E(Mn, Ln) formulated as:

E(Mn, Ln) =

J∑
j=1

∣∣∣∣∣∣ω
F
j − ω j(Mn, Ln)

ωFj

∣∣∣∣∣∣, (16)

where J is the number of modes to optimize, ωFj are the
target frequencies, and ω j(Mn, Ln) are the computed modal
frequencies for the mass values Mn and respective positions
Ln. Likely, E(Mn, Ln) may present several local minima,
and because the used algorithm is gradient-based, it can be
trapped in one of them. In order to overcome this scenario,
the optimization was successively performed using random
initial solutions, and in general, converged results were
consistently obtained. Fast results can still be achieved
thanks to the efficiency of the optimization algorithm allied
to the reduced model allowed by the modal formulation (see
Subsection 2.2). Finally, notice that a semi-discrete scheme
for the optimization process has also been recently proposed
by the authors in [12]. Instead of assuming continuous
values for the weight of the tuning mass, it allows for the use
of discrete predefined sets of standard masses which appears
more practical for real application.

4 Numerical results
In this section we present two illustrative cases where the

optimization procedure is applied. First, we aim to improve
the intonation of a vibraphone bar slightly out of tune. Then,
we attempt to go further and objective is to tune a bar with an
uniform cross-section. In both cases, a mesh comprising 64
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elements was considered for the FEM bar model, and values
of 710 GPa and 2750 Kg/m3 were assumed for the Young
modulus and density of aluminium respectively. For the
modal formulation a low order model with seven equations
was used.

4.1 Tuning a vibraphone bar
We present the optimization results for the first case,

for which we address the tuning of a badly tuned real-
life vibraphone bar. To that end, we model a laboratory
vibraphone prototype bar which needs minor tuning
corrections as it is classical for bar tuners. The bar
dimensions are 0.45 m length, 0.05 m width and variable
cross-section with heights between 0.01 and 0.025 m, with
a total mass of 1.2 Kg. The target tuning was the musical
note C2 (which corresponds to 262 Hz for the fundamental
frequency) with frequency ratios of 1:4:10 for the first
three bar flexural modes. This corresponds to frequency
corrections of about 8.8%, 7.8% and 5.6% respectively. A
typical error value evolution during the optimization process
is presented in Figure 1, illustrating the correct behaviour of
the optimization process. As can be seen, the convergence
of the error is achieved for a number of iterations of 25 for
this case.
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Figure 1: Error value E(Mn, Ln).

Figure 2 represents the bar profile as modeled through
FEM, in blue, and the optimized tuning masses and
respective positions in order to obtain the target tuning, in
red. The heights of the constraining masses were represented
based on the assumption that their length and width are
equal to those of each element of the mesh. Detailed values
are presented in Table 1.

Mass nr. 1 2 3 4 5 6

L∗n (m) 0.002 0.074 0.179 0.270 0.376 0.448

M∗n (Kg) 0.008 0.028 0.028 0.028 0.028 0.008

Table 1: Computed optimal tuning mass values M∗n and
respective positions L∗n corresponding to Figure 2.

Figure 3 shows a different optimal solution obtained
for the same problem by using different initial values for
the optimization, leading to a different set of masses and

Figure 2: Optimization solution 1 (M∗n, L
∗
n). Blue: original

bar profile; Red: additional tuning masses.

Figure 3: Optimization solution 2 (M∗n, L
∗
n). Blue: original

bar profile; Red: additional tuning masses.

locations. In Table 2 we can compare the modal frequencies
errors of the original system with the errors predicted for
the bar with the optimized additional masses, relative to the
target ratios. As we can see, negligible errors are obtained
for both solutions shown in Figures 2 and 3, suggesting
that very accurate tuning can be achieved with the proposed
approach for a given set of target tuned modal frequencies.
This also means that different local minima were accepted
as the solution for each optimization and the existence of
several solutions that comply with the target tuning.

4.2 Tuning a bar with uniform cross-section
Figure 4 shows, in blue, the profile of the modeled bar

with 0.5 m length, 0.06 m width and uniform cross-section
of 0.02 m. The frequency ratios of the unloaded bar for the
first three flexural modes are 1:2.8:5.4, with the fundamental
frequency 412 Hz. In this case, the objective was to achieve
the target ratios of 1:3:9 by attaching masses to the bar. Since
the mass increase only allows to lower the modal frequencies,
the proposed task implies their substantial decrease of 106%,
42% and 11%, respectively. As in Figures 2 and 3, the red
bars in Figure 4 represent the optimized additional masses
and respective distribution along the bar in order to achieve
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Mode nr. Target
ratios

Relative error (%)

Original Opt. 1 Opt. 2

1 1 8.8 1.5 10−6 7.8 10−6

2 4 7.8 3.7 10−6 1.8 10−5

3 10 5.6 4.6 10−6 5.4 10−5

Table 2: Modal frequency errors for the first three flexural
modes, relative to the tuning ratios 1:4:10, for the original
vibraphone bar and the bar with additional masses. Opt. 1
and Opt. 2 correspond to the errors from the optimizations

shown in Figures 2 and 3, respectively.

Figure 4: Optimization results (M∗n, L
∗
n). Blue: original bar

profile; Red: additional tuning masses.

the target tuning. In this case, for representative purposes, we
represent the bar heights assuming that they have the same
width as a mesh element, and the length of four times the
element length. The correspondent mass values are presented
in Table 3.

Mass nr. 1 2 3 4 5 6

L∗n (m) 0.025 0.075 0.175 0.325 0.425 0.475

M∗n (Kg) 1.217 0.103 0.639 0.639 0.103 1.217

Table 3: Computed optimal tuning mass values M∗n and
respective positions L∗n.

As expected, heavier masses are required for the tuning
when compared with the previous case, resulting in a total
added mass of 3.9 Kg. Nevertheless, as we can see in Table
4, despite the large frequency changes required, an accurate
tuning appears to be viable for uniform cross-section bars,
according to the optimization results.

5 Experimental results
We now validate the tuning approach experimentally. To

that end, bars with similar profile as the ones considered in
the previous section are investigated. Experimental modal
analysis of the bars constrained and unconstrained are then
performed, and the efficiency of the techniques can be easily
assessed by examining the frequency changes caused by the
tuning masses.

Mode nr. Target ratios
Relative error (%)

Original Optimized

1 1 106 2.2 10−6

2 3 42 1.1 10−6

3 9 11 2.4 10−7

Table 4: Modal frequency errors for the first three flexural
modes, relative to the tuning ratios 1:3:9, for the original
uniform cross-sectional bar and the bar with additional

masses.

5.1 Re-tuning a mistuned vibraphone bar
Figure 5 shows the prototype vibraphone bar modeled

in Section 4.1, which was originally mistuned (see Table
2), and with the additional masses presented in Table 1. In
order to comply the numerical model which assumes point
masses, we used a set of spherical masses with weights
as close as possible to the optimal mass values given by
the optimization. Also for practical reasons, since the bar
bottom surface was machined in steps, we opted to glue the
spherical masses on the top flat surface. For validation, a

Figure 5: Vibraphone bar prototype with additional masses
M∗n in the L∗n positions.

modal identification of the bar constrained by the masses
was performed by impact testing, using an impact hammer
to measure the input force and an accelerometer, glued to
the bar at one extremity and aligned on the longitudinal
axis, to measure the bar response. Modal identification
was achieved by using a MDOF program based on the
Eigensystem Realization Algorithm [13], which have been
developed in [14]. Results are shown in Figure 6, where the
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Figure 6: Transfer functions. Red: Unloaded bar; Green:
Bar with optimized additional masses.

dashed lines represent the location of the target frequencies.
As we can see, the original bar frequencies (in red) were
correctly shifted in order to match the pre-defined target
tuning. On the whole, negligible tuning errors of less than
1 % were obtained, which shows the effectiveness of the
developed modeling and optimization strategies.
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5.2 Tuning a bar with uniform cross-section
Here we will present the results for the second case,

for which we attempted to tune an uniform cross-section
bar. Figure 7 shows the original bar with the additional
optimized tuning masses. In this case, because of the large
mass values (see Table 3), threaded holes were made at the
mass positions, so that the masses can be screwed to the bar.
For the modal identification, we used the same methodology
described in Section 5.1. As we can see in Figure 8, despite
the large frequency changes demanded to accomplish with
the proposed target ratios, successful results were obtained
for the frequencies of interest.

Figure 7: Uniform cross-sectional bar with screwed
optimized additional masses M∗n at the L∗n positions.
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Figure 8: Transfer functions. Red: Unloaded bar; Green:
Bar with optimized additional masses.

However, although error less than 1 % were obtained
for the first two modes, the third modal frequency is shifted
by an amount of about 4 %. Despite care was taken for
the realization, this error can be probably explained by the
stiffness constraints added by the screwing of the masses to
the bar.

6 Conclusions
The aim of this work was to develop an innovative non-

destructive method for the tuning of bars by attaching locally
tuning masses. Our aim was accomplished through the
coupling of physical modeling and optimization techniques,
which proved to be effective for the proposed applications.
The use of gradient-based optimization strategies combined
with the modal formulation allows very fast computations
which can be particularly advantageous for the application of
the technique to more refined models. A possible difficulty
with this kind of structural modification is an increase of
the system damping due to the attachments of the masses.
In order to minimize this problem, sub-system interface
surfaces should be kept to a minimum. For the present
bars, the increase in damping was found to be manageable.
Nonetheless, being a reversible method, this work is a further

step towards the non-destructive tuning of vibraphone bars
as well as for other musical instruments.
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