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The couplings between the strings and the body of a bowed or plucked string instrument are described by 2-D

mobility matrices. In this paper, a low cost method for measuring such mobility matrices is presented. It is based

on the so called wire-breaking technique, which is a simple mechanism for driving the points where the strings

make contact with the bridge : a thin copper wire placed around the string in a position very close to the saddle

is pulled aside in the direction of interest until it breaks abruptly imparting a step function force to the driving

point. When carried out with damped strings, the acceleration of the bridge measured with a miniature sensor

provides a good estimation of transfer mobilities without using any force sensor. A calibration method for absolute

mobility measurement is proposed. The limits of the technique in terms of repeatability and signal-to-noise ratio

are investigated in the cases of the classical guitar making use of comparisons with results obtained by the classical

impact hammer method.

1 Introduction
The sound produced by bowed or plucked stringed

instruments is the result of interactions of various

subsystems: the excitation mechanisms, the strings, the

instrument body, the external medium and the listener. Once

the strings are played, the most of the energy that will be

converted into radiated sound is transferred to the body

through the bridge. The ratio of this energy transfer depends

on how strong the strings and the body are coupled: the

stronger the couplings are, the higher is the energy transfer

ratio, so the tone produced is relatively powerful but with

a short duration. Conversely, weak strings/body couplings

leads to a low energy transfer ratio resulting in a less

powerful tone with a longer duration. Therefore, the degrees

of couplings between the strings and the body, which can

be described by 2-D mobility (or mechanical admittance)

matrices measured at the bridge, are determinant on the

instrument sound quality. In addition, bridge mobility

measurements may be helpful for instrument makers to

characterize and compare objectively different stringed

instruments [1, 2, 3, 4, 5, 6, 7, 8]. This study is a part of the

PAFI project, which aims to develop a set of tools dedicated

to instrument makers [1, 2, 6, 9]. In this context, the main

goal of this paper is to present and investigate the wire

breaking method, which is a low cost method for measuring

the mobility matrix at the bridge of stringed instruments.

1.1 Bibliography review
The wire breaking method is based on the analysis of

the response of a structure to a step force. This technique

has been investigated for example for some civil engineering

systems such as wind turbine where mechanical excitations

for modal testing are not so easy to produce. In the musical

acoustics context, such technique has been introduced by

Woodhouse [5] who presented two different applications.

First, it was used for obtaining controlled pluck responses

on classical guitars: the wire provided at the pluck position a

repeatable excitation in terms of level of stress in a direction

of interest and the vibration responses were recorded

using a microphone and accelerometer, which allowed

comparisons with synthesized plucks obtained by different

methods. Second, the wire breaking method was used for

measuring co-located admittances at the bridge of classical

guitars, which were used to feed different synthesis models.

Unlike the present study, the wire breaking force was not

determined so that the measurements were calibrated with

respect to a calibrated hammer/laser measurement. In [12], it

has been presented a methodology for guitar synthesis based

on constructing passive admittance matrix models from

measured co-located admittance matrix at the guitar bridge.

The bridge was also excited by the wire breaking technique

at a position close to the saddle and the bridge response was

measured by a miniature accelerometer. In [10], mobility

measurements on cellos using the wire breaking method

were carried out. A pickup system mounted on the bridge

in order to collect the input force signals at the string

notches. The results were compared with hammer excitation

and normal bowing: results indicated that there is nothing

fundamentally different between those methods. The wire

technique was also used in [11] for measuring the bridge

impulse response on violins with damped strings: the string

was excited at the bowing position leading the breaking

wire to impart an impulse that runs along the string and hits

the bridge. In [14] the wire excitation allows a controllable

pluck at different positions, in different directions: a high

resolution analysis was used for the extraction of the

body-mode contribution from the recorded sound. Finally,

in [15], the wire technique was used to pluck isolated strings

in order to study the influence of the string damping on the

decay times of electric guitar tones.

1.2 Statement of the problem
For a linear system, the mobility transfer function Yi j(ω)

is defined in the Fourier domain as the ratio between the

velocity response Vi(ω) at the point i due to the force F j(ω)

applied at the point j,

Yi j(ω) =
Vi(ω)

F j(ω)
, (1)

where ω is the angular frequency.

Figure 1: Directions assumed for string forces and bridge

velocities: two orthogonal components, parallel and

perpendicular to the soundboard, represented as y and z
directions, respectively.

For bowed and plucked string instruments, the mobility

measured at the bridge quantifies the conversion of string

force into bridge velocity. In the present study, both string

forces and bridge velocities are assumed to be composed by

two orthogonal components, parallel and perpendicular to
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the soundboard, represented in Figure 1 as y and z directions,

respectively, so that

[
Vy(ω)

Vz(ω)

]
= Y
[

Fy(ω)

Fz(ω)

]
, (2)

where the indexes y and z represent respectively the parallel

and the perpendicular directions to the soundboard and Y is

the 2 × 2 mobility matrix defined as

Y =
[

Yyy(ω) Yyz(ω)

Yzy(ω) Yzz(ω)

]
. (3)

The description above neglects both string and bridge

longitudinal motions since the parallel and perpendicular

components are much higher. It is also assumed that no

torque is exerted on the body when forces are applied to the

driving points, so that the component in the x direction is

ignored (cf. [16]).

Mobility matrices measured at the string/bridge contact

points of string instruments are usually used to feed models

aiming at the instrument sound synthesis [7, 12, 13]. The

classical method used for measuring these transfer functions

is based on the so-called hammer method: an impulse force

is imparted at the point in direction of interest by means of a

miniature hammer and the resulting acceleration is measured

by a laser vibrometer or a lightweight accelerometer

mounted on the bridge. Figure 2 shows typical experimental

setups used for measuring mobilities at the bridge of banjos,

Brazilian guitars, classical guitars and violins via the

hammer method.

Figure 2: Typical experimental setups used for measuring

mobilities at a bridge of banjo (a), Brazilian guitar (b),

classical guitar (c) and a violin (d) via the hammer method.

Although being a classic procedure, doubts regarding the

reproducibility of the hammer method may be raised since

it can be hard to perform repeatable measurements in terms

of excitation directions and impact positions. In addition, it

is impractical to perform with hammer an excitation at the

strings/bridge contact points in the direction y, parallel to

the soundboard. Finally, despite the hammer method is a

well-adapted procedure for measurements in the laboratory

environment, it may prove unsuitable for applications in

the context of the instrument manufacturing, mainly due to

the high cost of the experimental setup. In this sense, the

present paper is devoted to study the wire breaking method,

which can be a low cost and well-adapted procedure for

measurements in the environment of a instrument maker

workshop.

The main aspects of our approach are highlighted by the

organization of the paper. Section 2 presents the principles

of the wire breaking method and describes one application

on the estimation of unknown mobilities in the case of two

strings. In Section 3, the limits of the wire breaking method

are investigated in the case of the classical guitar making use

of comparisons with results obtained by the classical impact

hammer technique. Finally, a calibration method for absolute

mobility measurement is proposed in Section 4.

2 Wire breaking method
The method is based on the the so-called wire breaking

technique which can be a suitable mechanism for exciting

the points where the strings make contact with the bridge.

It consists in driving the string/bridge contact points by

means of a thin copper wire: first, the wire is placed around

the string in a position as close as possible to the saddle

and then is pulled aside in the direction of interest until

it breaks abruptly imparting a step function force to the

excitation point. The measurement of the bridge response

without the effect of string motion is feasible when the

strings are completely damped. Under those conditions,

the acceleration response to the wire excitation measured

with a miniature sensor mounted on the bridge provides a

good estimation of bridge mobilities without using any force

sensor as detailed in Subsection 2.1.

The choice of the wire diameter is determinant in

the reliability of the results: if the wire is too thick, the

instrument may move when the wire is pulled aside leading

to distorted measurements. Conversely, if the wire is

too thin, a low signal to noise ratio may invalidate the

measurements. The wire diameter is also related to its

breaking force f0, whose magnitude is measured using an

experimental procedure described in Subsection 4.1. Finally,

since the breaking force f0 is expected to be invariable

for samples from the same reel and the choice of the

excitation angles are controllable, the method allows the

measurements to be reproducible in different environments,

by manipulation of different operators.

2.1 Relation of equivalence between v-impulse
response and a-step response

Let us consider a system described by N degrees of

freedom, a mass matrix M, a damping matrix C, a stiffness

matrix K, a displacement N × 1 vector x(t), excited by a

force N × 1 vector f(t). The Laplace transform of the motion

equation

Mẍ(t) + Cẋ(t) +Kx(t) = f(t) (4)

leads to

X(s) =[s2Mẍ + sC +K]−1f(s)

+ [s2Mẍ + sC +K]−1((sM + C))x(0) +Mẋ(0)).
(5)

The Laplace transform of velocity resulting from a Dirac

excitation fD(t) = [0...0 δ(t) 0...0]t applied at one single

degree of freedom is given by

L{ẋ(t)} = s[s2Mẍ + sC +K]−1[0...0 1 0...0]t. (6)

It can be also shown that the Laplace transform of

the acceleration resulting from a step force excitation
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fS (t) = [0...0 H(t) 0...0]t applied at one single degree of

freedom (H(t) being a Heaviside function), is given by

L{ẍ(t)} = s[s2Mẍ + sC +K]−1[0...0 1 0...0]t. (7)

Since the right-hand side of Equations (6) and (7) are the

same, it is clear that the velocity resulting from a Dirac

excitation is equal to the acceleration response resulting

from a step excitation. Thus, the mobility of the system can

be obtained from the Fourier transform of the acceleration

response resulting from a step force excitation. In the present

issue, the amplitude of the step function force is equivalent

to the wire breaking force f0 rather than unitary so that the

mobility of the system in physical units is obtained from the

the acceleration response to the wire excitation divided by

f0, which can be seen as a calibration factor.

2.2 Estimation of unmeasured mobilities: case
of 2 strings

The velocity response measured at a point A due to a

force applied at a point E, leads to the mobility Y(A, E, ω),

Y(A, E, ω) = iω
M∑

k=1

ϕk(A)ϕk(E)

mk(ω2
k + 2iωωkζk − ω2)

, (8)

where M is the number of modes and ϕk, mk, ωk, ζk, are

respectively the modal shape, the modal mass, the modal

angular frequency and the modal damping factor of the

kth mode. A typical application for estimating unknown

mobilities by the wire breaking method is described in

Table 1, in the case of 2 strings: the accelerometer is fixed

at the coupling point 1, in the direction z, denoted by point

(1z) and the excitation points are changed so that we can

measure the four mobilities expressed by the Equations from

(9) to (12). Then, the modal parameters of each mode can

be estimated over a large frequency range by means of a

suitable high-resolution method, for example the subspace

ESPRIT method (cf. [1]). Once extracted the modal

parameters, it is possible the computation of unmeasured

mobilities such as: Y(1y, 1y, ω), Y(2z, 2z, ω), Y(2y, 2z, ω),

Y(2y, 2y, ω). Therefore, since the reciprocity principle is

assumed, the estimation of the co-located mobility matrices

at the points 1 and 2 is possible by using only a fixed

accelerometer without force sensor.

2.3 Experimental setup
All the measurements reported in this study were

performed in the same laboratory environment. The results

presented in Section 4 regard to measurements performed

on a classical guitar. The instrument is hanged by means of

an appropriate support so that free boundary conditions are

approached. The strings are tuned before any measurement

to their usual static tensions. Since the present study focuses

on a procedure which is not addressed to the fabrication of

instrument strings, but to the manufacturing of instrument

bodies, all the measurements were carried out with damped

strings.

For measurements made with the hammer method, the

force signal is provided by a miniature impact hammer PCB

Piezotronics 086E80 whose head is mounted on a flexible

beam clamped at its extremity. Such setup is a convenient

way to control precisely the impact location and to avoid

Table 1: A typical configuration for mobility measurements

at 2 string/bridge contact points by the wire breaking

method.

Y(1z, 1z, ω) = iω
M∑

k=1

ϕk(1z)ϕk(1z)

mk(ω2
k+2iωωkζk−ω2)

(9)

Y(1z, 2z, ω) = iω
M∑

k=1

ϕk(1z)ϕk(2z)

mk(ω2
k+2iωωkζk−ω2)

(10)

Y(1z, 1y, ω) = iω
M∑

k=1

ϕk(1z)ϕk(1y)

mk(ω2
k+2iωωkζk−ω2)

(11)

Y(1z, 2y, ω) = iω
M∑

k=1

ϕk(1z)ϕk(2y)

mk(ω2
k+2iωωkζk−ω2)

(12)

multiple hits. The excitation position was chosen on the

saddle, as close as possible to the contact point of the e-string

with the bridge as shown in Figure 2c.

For measurements made with the wire breaking method,

the force signal is provided by a thin copper wire with

diameter of 0.1mm placed around the e-string in a position

very close to the saddle as shown in Figure 3. Measurements

using wires with diameters of 0.056mm, 0.1mm and 0.15mm

were carried out and the results using wires with diameter

of 0.1mm proved to be more suitable for the case of the

classical guitar. For both the hammer and wire breaking

methods, acceleration signals are collected by a lightweight

accelerometer PCB Piezotronics 352C23 (0.2 g) mounted

on the bridge, close to the excitation point. A typical

experimental setup for mobility measurements via wire

breaking method is shown in Figure 3.

Figure 3: The experimental setup for mobility

measurements via wire breaking method.
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3 Results and discussion

3.1 Mobilities obtained with the hammer and
wire breaking methods

The comparison between the typical mobility

measurements at the bridge of banjos, Brazilian guitars,

classical guitars and violins via the hammer method is shown

in Figure 4, which highlights the difference of profiles of

those four instruments. The respective experimental setups

are shown in Figure 2. All the mobilities are characterized

by numerous resonances, which induced variations around

the averaged value over the useful frequency range. The

values of the averaged mobility and the modal densities are

important features of a soundbox [4]. Since the soundboard

of the banjo is a membrane, its mobility is the highest up to

1500 Hz. On the other hand, the violin mobility is amplified

in the vicinity of 2500 Hz, presenting the highest values:

this feature is often refereed as the Bridge Hill [8, 17, 18].

The guitar soundboards’ (classical and Brazilian) have been

shown to plate-like systems: their mean mobilities and the

modal densities are nearly independent on the frequency.

This property is the one of a plate, whose equivalent

parameters can be computed (cf. [4]).
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Figure 4: Mobility curves measured via the hammer method

at the bridge of different instruments: classical guitar

(green), Brazilian guitar (magenta), violin (red) and banjo

(blue).

Figure 5 shows the comparison between calibrated and

uncalibrated mobilities, from 0 to 2000 Hz, obtained with the

hammer and wire breaking methods, respectively. Figure 6

shows the same comparison in a frequency range from 2000

Hz to 7000 Hz. In general, both curves present similar

patterns except for the difference in level, which is about 10

dB. As highlighted above, these discrepancies are expected

since the measurements obtained by the wire method are not

calibrated, i.e. the factor f0 is not taken into account. It is

also observed that at frequencies higher than 4000 Hz the

hammer method produces noisier results, revealing another

advantage of using the wire breaking method in the present

context. The results presented in Figures 5 and 6 confirm

the mathematical statement demonstrated in Subsection 3.1

and clearly illustrate that the determination of the factor f0 is

crucial to validate mobility measurements obtained with the

wire breaking method.
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Figure 5: Comparison between mobility curves, from 0 to

2000 Hz, obtained with the hammer (black) and wire

breaking (red) methods.
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Figure 6: Comparison between mobility curves, from 2000

Hz to 7000 Hz, obtained with the hammer (black) and wire

breaking (red) methods.

3.2 Repeatability of the wire breaking method
In order to assess the repeatability of the wire breaking

method, 5 mobility curves are measured under the same

measurement conditions and compared in Figure 7. It can

be observed that all the curves present substantially the

same profile, which confirms the breaking wire method is

repeatable.
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Figure 7: Comparison between 5 measures of mobility

curves obtained in the same conditions with the wire

breaking method.

4 Calibration of the wire breaking
method

As demonstrated in Subsection 2.1, the wire breaking

method offers the advantage with respect to the hammer
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method because it requires only one acceleration sensor for

measuring mobilities on the bridge of the instruments. On

the other hand, it is necessary to determine preliminarily the

calibration factor f0, which converts uncalibrated mobility

curves into transfer functions with real physical meanings.

4.1 Use of a fixed impact hammer for wire
force measurement

Figure 8 shows the experimental setup used for

estimating the wire breaking force. The measurements

consist in threading the wire through a rigid holder attached

at the head of an impact hammer PCB Piezotronics 086C03,

while the opposite hammer end is clamped onto a flat

surface. In this way, the magnitude of the force measured by

the hammer when the wire is pulled quasi-statically until it

breaks is equivalent to the force exerted on the string by the

wire in a mobility measurement. The value of f0, therefore,

is given by the maximum magnitude of the force curve

measured in function of time, called in this study the wire
breaking force curve.

Figure 8: Experimental setup used for estimating the wire

breaking force curves: the wire is attached to a fixed impact

hammer and pulled until it breaks.

Figure 9a shows a typical wire breaking force curve. For

the sake of better visualization the signal of the measured

force was inverted. At first, an upward force region is

observed, which corresponds to the time interval the wire is

stretched. Then, the wire breaks and the measured force falls

abruptly since no tension is exerted by the wire. Finally, the

measured force features a damped oscillatory behavior that

fades out progressively, whose reasons are not clear but may

be related to the fact we are dealing with a quasi-statically

test while the impact hammer used is designed to perform

dynamic tests. Figure 9b shows the comparison between

10 measures of the wire breaking force curves obtained

at the same measurement conditions. Although all the 10

resulting curves exhibit the same profile, small differences

can be observed, which can be due to slight variations of the

gesture made by the operator while pulling the wire. Thus, a

more detailed study concerning the gesture and its possible

influences on the reliability of the wire breaking method

may be investigated in further works. Since the factor f0 is

given by the maximum magnitude of the wire breaking force

curves, a value of f0 = (4.32 ± 0.14)N is obtained.

Figure 10 compares bridge mobilities measured with

the hammer method and the wire breaking method after

calibration via the procedure described above. It can be

observed a satisfactory agreement between both curves,

which indicates that the experimental procedure used for

measuring the wire breaking force curves provides a suitable

calibration for the wire breaking method.
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Figure 9: Typical measurement of force obtained by the

setup with only impact hammer.

0 500 1000 1500 2000 2500 3000
−80

−70

−60

−50

−40

−30

−20

−10

Frequency (Hz)

M
ob

ili
ty

 (d
B

)

Figure 10: Comparison between calibrated mobility curves

obtained with the hammer (black) and wire breaking (red)

methods.

Finally, it is worth mentioning that the wire breaking

force may be determined by statical tests by gradually

attaching weights to the wire until its rupture. This

procedure may be more feasible since a possible influence

of the hammer on the results can be avoided.

5 Conclusion
This paper has presented and investigated the wire

breaking method, which is used for measuring mobility

matrices at the bridge of string instruments. was used for

measuring mobilities at the bridge of string instruments

without using any force sensor. In addition, it can be a

low cost and well-adapted procedure for measurements in

the environment of a instrument maker workshop since

no force sensor is required. The method was shown to be

repeatable and provided results in reasonable agreement

with the classical hammer method. A calibration method for

absolute mobility measurement was proposed and validated.
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Finally, it was also shown an application of the wire

breaking method: a modal analysis of the mobility curves

measured using only a fixed accelerometer without force

sensor allows the computation of unmeasured mobilities

at the string/saddle contact points. In further works, such

application can be used to feed sound synthesis models.
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