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Effects from micro-structured surfaces with inner resonance, that is resonant surfaces, are investigated in both

acoustics and elastodynamics. Their behaviour is described in terms of effective boundary conditions derived by

means of two-scale asymptotic homogenization. The model is validated by comparing its results with shaking

table measurements in elastodynamics and impedance tube and anechoic chamber measurements in acoustics. The

model is also validated numerically against Multiple Scattering Theory in acoustics. It is shown that elastodynamic

resonant surfaces can depolarize mechanical waves in homogeneous media, and that acoustics resonant surfaces

are efficient for total sound absorption in the deep sub-wavelength regime (lattice size smaller than wavelength/27).

1 Introduction
An economic way to control vibrations in homogeneous

media is to control boundary conditions : the internal

structure thus remains unperturbed and the surface treatment

requires less materials than that of the entire volume.

The present study focuses on vibration control through

micro-structured resonant surfaces in acoustics and

elastodynamics. In particular, it aims at investigating the

similarities and differences of resonant surfaces in these

domains. Although both acoustics and elastodynamics are

parts of continuum dynamics, acoustics deals mostly with

wave propagation in fluids, while elastodynamics considers

propagation in solids. In acoustics the main descriptor is

pressure, which is a scalar quantity. In elastodynamics a

vector particle displacement is used to describe the wave

phenomena.

Nevertheless, whether in acoustics or in elastodynamics,

the concept of resonant surface remains the same : it is

made up of the two-dimensional Σ-periodic arrangement of

linear resonators at the plane boundary Γ (outward normal

n) of the medium. The propagation of small perturbations is

studied in the linear harmonic regime at frequencies ω/(2π)
(time factor e−iωt) close to the eigenfrequency ωo/(2π) of

the resonators. In that frequency range, a scale separation is

assumed, whereby the wavelength λ = 2π/k is much larger

than the characteristic size � of the representative element

of the array. This scale separation is quantified by the small

scale parameter ε = 2π�/λ � 1. The physics of such

micro-structured surfaces is distinct from that of corrugated

surfaces, that display no resonance in the low frequency

range, and that of phononic crystal surfaces for which the

wavelength is of the order of the lattice size.

Due to the deep sub-wavelength regime, small-scale

perturbations introduced in the fields by the micro-structures

remain localized nearby the resonant surface, and form a

locally-periodic boundary layer. Taking advantage of the

2-D periodicity and of the scale separation, the method

of two-scale asymptotic homogenization [1, 2] is applied

to analyse that boundary layer. This method (ordinary

used to derive the equivalent behaviour of heterogeneous

bulk media) enables to describe the resonant surface effect

by an effective boundary condition with unconventional

frequency-dependent properties [3]. Analytical predictions

are straightforward and make the design of resonant surfaces

easily adjustable. Experimental prototypes are designed,

which confirm, both in acoustics and elastodynamics, the

efficiency and robustness of this principle to control waves

in the medium.

2 Homogenization of resonant surface
The derivation of the effective boundary conditions

for the resonant surface are presented in this section.

The elastodynamic model of Boutin & Roussillon [3] is

briefly recalled and extended to acoustic resonant surfaces.

That allows us to underline the differences between

elastodynamics and acoustics, despite their common roots in

continuum dynamics.

2.1 Analogy and duality between acoustics
and elastodynamics

The homogenization of resonant surfaces in acoustics

and elastodynamics can be achieved in a similar way,

exploiting the following analogy between them. The field

of interest is the pressure field p in acoustics, and the

displacement field u in elastodynamics. Their first spatial

derivatives are related to a flux : in acoustics, the gradient

grad p is related to the particle velocity v through the

momentum conservation ; while the deformation tensor

e(u) = (grad u + tgrad u)/2 is related to the stress tensor σ
through the elasticity relation in elastodynamics :

iωv = ρ−1
e grad p ; σ = C : e(u) ; (1)

where ρe = 1.213 kg/m3 is the air density and C is the

elasticity tensor (order 4). The balance of flux in the medium

is then stated by the mass conservation in acoustics, and by

the dynamic equilibrium in elastodynamics :

div(iωv) = −B−1ω2 p ; div(σ) = −ρω2u ; (2)

where B is air bulk modulus and ρ is the density of the

elastic medium. Equations (1) and (2) bears testament to a

strong analogy between acoustics and elastodynamics, but

also underlies the stress/displacement duality between them.

2.2 Two-scale phenomena
The scale separation ε = 2π�/λ � 1 introduces two

characteristic lengths in the system : the macroscopic

size L = λ/(2π) of the long-wavelength field and the

lattice size � = O(εL) of the micro-structures arrangement.

Excited by the wavefield (acoustic pressure or elastic

displacement) that prevails in the homogeneous mediumM,

the micro-structures of the resonant surface act as mutually-

interacting secondary sources and produce an heterogeneous

distribution of flux at the boundary of the medium (normal

particle velocity vr in acoustics or surface stress t in

elastodynamics). That flux distribution is locally Σ-periodic

while being modulated at the long-wavelength scale (forced

by the long-wavelength field). The long-wavelength field,

which displays significant variations upon distances O(L),

cannot balance the two-scale flux distribution on its own,
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because of a scale-mismatch with the local periodicity. To

fulfil the scale-transition between the long-wavelength field

and the sub-wavelength resonator arrangement, a boundary

layer is formed in the vicinity of the surface (pressure p�

and particle velocity v� in acoustics ; displacement u� and

stress σ� in elastodynamics). Superimposed upon the long-

wavelength field to satisfy the locally-periodic boundary

conditions, and localized near the resonant surface, the

Boundary Layer (BL) is made of evanescent waves which

fade away at some distance from the surface.

2.3 Homogenization method
The description of the resonant surface by an effective

boundary condition relies on the analysis of the boundary

layer. Following the method described by Sánchez-

Palencia [1] and adapted to resonant surfaces in [3], the

homogenization procedure is based on two main steps : the

two-scale description of space and the asymptotic expansion

of the fields.

To describe field variations at both long-wavelength and

deep sub-wavelength scales, two space-variables are used,

linked by the scale ratio ε : the macro-variable x and the

micro-variable y = ε−1x. The long-wavelength fields depend

only on x while the boundary layer fields and the flux

produced by the resonators at the boundary depend on both

variables x and y. The differentiation of the fields is modified

accordingly using both space variables x and y ; for instance

grad = gradx + ε
−1grady where gradx and grady denote the

gradients with respect to x and y. The space-variables are

defined in the Cartesian coordinate system (e1, e2, e3), with

e3 = −n being the inward normal. In the local description,

that is with the micro-variable y, the origin O of the local

frame is chosen at the centre of the period Σ.

The physical fields are expanded asymptotically in

powers of ε, that is, for instance, p = p(0) + εp(1) + ε2 . . .
for the pressure field p, where orders are indicated

in superscripts between brackets. The expansions are

substituted in the governing equations (mass and momentum

conservation and rheological relations) and boundary

conditions. Terms of equal powers are collected, providing

problems that are solved in increasing order of ε-powers.

2.4 Physics at leading order
Without providing the full derivation (see [3, 4] for that

purpose), this paragraph aims at giving the most significant

results found at the leading order (power ε0) and which will

be used in the sequel.

First of all, it is shown that the BL fields are one order

smaller in amplitude than the long-wavelength field (that is,

p�(0) = 0 in acoustics, u�(0) = 0 in elastodynamics) and

thus can be neglected in the leading order description. In

other words, the long-wavelength field prevails at the leading

order.

Secondly, the balance of flux in the boundary layer

is shown to be given by a locally incompressible flow in

acoustics, and a locally quasi-static state in elastodynamics :

divy(v�(0)) = 0 ; divy(σ�(0)) = 0 . (3)

Associated with the conditions of local periodicity and

evanescence of the BL fields v�(0) and σ�(0), the following

boundary conditions are found for the long-wavelength

fields at each period Σ :

v(0) · n = −Q(0)

|Σ| ; σ(0).n =
F(0)

|Σ| ; (4)

where Q(0) =
∫

v(0)
r dS is the acoustic flux pulsed out by

the resonators at Σ, and F(0) =
∫

t(0) dS is the force exerted

by the resonators on the elastic medium at Σ. Note that, due

to the stress/displacement duality noted previously, acoustic

resonators affect the mass conservation, while mechanical

resonators affect the balance of stress.

Finally, due to the linearity of the resonators, they

respond to the prevailing long-wavelength field (p(0) in

acoustics, u(0) in elastodynamics) through a frequency-

dependent acoustic admittance Y or mechanical impedance

matrix Z, that is Q(0) = Y p(0) and F(0) = Zu(0). As a result,

the long-wavelength fields are governed by the following

equations in the medium M and at its boundary Γ (the

superscrips (0) are omitted here and in the sequel) :⎧⎪⎪⎨⎪⎪⎩ div
[
ρ−1

e grad p
]
= −B−1ω2 p inM[

ρ−1
e grad p

]
· n = iωΥp at Γ

(5)

in acoustics, and{
div [C : e(u)] = −ρω2u inM
[C : e(u)] .n = ZΓu at Γ

(6)

in elastodynamics, where Υ = −Y/|Σ| and ZΓ = Z/|Σ| are

the effective acoustic admittance and elastodynamic surface

impedance matrix of the resonant surfaces. Consequently,

frequency-dependent effects can arise from the resonant

admittance Υ or surface impedance ZΓ (despite the elasticity

of the media). Moreover, in elastodynamics, the matrix

ZΓ can be anisotropic (depending on the properties of

the mechanical resonators) thus producing anisotropic

phenomena in an otherwise isotropic medium.

3 Elastodynamic resonant surface
To observe depolarization of waves by the resonant

surface [3, 5, 6], an experimental prototype is designed

using the homogenization model, and experimental results

are compared to the theoretical ones.

3.1 Experimental prototype
The anisotropic resonant surface consists of 37 resonators

arranged periodically with the spacing � = 5 cm see Fig.1(a).

Each resonator (mass mt = 0.849 kg) consists of a

rectangular aluminium sheet clamped at its long edge

between two angle bars adhered to the elastic substrate. The

resonators respond to any horizontal motion by resonating

in bending with out-of-plane excitation (direction e1), but

remains inert with in-plane excitation (e2 orthogonal to

e1). In the bending direction e1 and around its first mode,

the resonant sheet (18.3 cm-high outside the angle-bars,

0.5 mm-thick) is characterized by the sheet’s fundamental

frequency ω[1]
o /(2π) = 8.45 Hz, modal mass at the first

mode m[1]
o = 0.266 kg (61.3% of the bending mass), and

weak damping ξo ∼ 3.8%. The complementary mass

m[1]
i = mt − m[1]

o accounts for the inert mass associated

with inactivated modes. In the orthogonal direction e2, the
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Figure 1 – (a) : Experimental prototype. (b) and (c) : Amplitude and phase of the normalized surface motion in the principal

axes against frequency. (d) and (e) : Surface motion in response to a harmonic motion prescribed at the table in the 45o direction

from e1. Comparison between experimental data from central accelerometer (EXP) and theoretical results from Surface

Impedance Model (SIM).

sheet remains inert, leading to the inert and modal masses

m[2]
i = mt and m[2]

o = 0 and eigenfrequency ω[2]
o ≫ ω

[1]
o .

The elastic medium is a layer (thickness H = 76 cm)

made of cellular polyurethane foam with isotropic linear

elastic behaviour (density ρ = 49 kg/m3, shear modulus

μ = 55 kPa, Poisson ratio ν = 6%, shear wave velocity

cS = 33 m/s and weak damping ξ ∼ 4.9%). The condition

of scale separation is satisfied at the resonant surface

resonance : ε(ω[1]
o ) ≈ 0.09. To magnify interactions,

the elastic layer is designed so that its eigenfrequency

ωH/(2π) = cS /4H in free surface condition is close to

the one ω[1]
o /(2π) of the resonant surface. The uniform

displacement Ub is imparted by a shaking table at the

base of the layer in the horizontal direction eb. Denoting

ω∗H = ωH
√

1 − i2ξ and Z∗S = ρcS
√

1 − i2ξ, and accounting

for the layer thickness H, the surface displacement in the

resonant surface principal directions e j=1,2 reads :

UΓ · e j

Ub · e j
=

[
cos

(
π

2

ω

ω∗H

)
+ i

Zj

Z∗S
sin

(
π

2

ω

ω∗H

)]−1

(7)

where the expression of the resonant surface impedance ZΓ =∑
j Z je j ⊗ e j is found from Newton’s Second Law :

Zj

Z∗S
=

iωm[ j]
o

Z∗S |Σ|
ω

[ j]2
o − i2ξoω

[ j]
o ω

ω
[ j]2
o − i2ξoω

[ j]
o ω − ω2

+
iωm[ j]

i

Z∗S |Σ|
, (8)

3.2 Evidence of depolarization
The surface displacement in the principal axes is plotted

against frequency in Fig. 1(b) and (c) when the base motion

Ub is oriented along e1 or e2. Close to the frequency ωH

at which the layer’s resonance should be, the resonant

surface resonance enforces a rigid-like condition leading

to UΓ.e1 → 0 at ω = ωo ≈ ωH . The layer’s resonant peak

is split into two layer/resonant surface resonant peaks with

substantially-reduced amplitudes : at the lower frequency

ωa, the oscillators are in phase with the layer and at the

higher frequency ωb the oscillators are in phase-opposition

with the layer. Conversely, when the base motion is oriented

along e2, the transfer function is similar to that of the layer

with a free surface but with a reduced eigenfrequency ω[2]
H

due to the inert mass mt. These experimental observations

are in agreement with the theory. This demonstrates the

ability of resonant surface to produce boundary conditions

ranging from free to rigid-like according to the frequency.

Harmonic horizontal motions Ub = Ubeπ/4 are now

imposed out of principal axis, with a polarization angle π/4
counted from e1. Fig. 1(d) and (e) show that the surface

motion UΓ can strongly depart from the direction of the input

motion Ub. In the frequency range ω ≈ ω[1]
o , the response

spectrum along e1 is close to zero due to the resonant surface

resonance, while that along e2 is amplified by the layer

resonance around ω[2]
H ; hence, the surface motion is mostly

polarized along e2, see Fig. 1(d). In the frequency range

ω ≈ ωb, the response spectrum along e1 is amplified by the

second layer/resonant surface resonance, while that along

e2 has passed the resonance ; hence, the surface motion is

mostly polarized along e1, see Fig. 1(e). These observations

agree with the theory and confirm that the resonant surface

is a mechanical depolarizer of shear waves.

4 Acoustic resonant surface
To observe the unconventional reflection properties

of acoustic resonant surfaces, an experimental prototype

is designed using the homogenization model, and both

impedance tube and anechoic chamber measurements are

compared to the theoretical results. The model is also

validated against numerical simulations in a 2D problem

with split ring resonators in order to show that critical

coupling between the resonant surface and the wavefield

can be achieved at the resonance frequency of the resonant

surface.
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Figure 2 – Experimental prototypes. (a) Schematic view of

the spherical Helmholtz resonator with details of its inner

duct ; (b) Arrangement of 4 Helmholtz resonators in the

impedance tube ; (c) Arrangement of 961 Helmholtz

resonators on a rigid surface tested in the anechoic chamber.

4.1 Experimental prototype
The resonant surface consists of Helmholtz resonators

arranged periodically on a rigid surface. The design

developed in [7] to achieve the scale separation around

resonance is used. The resonator consists of a spherical

cavity of radius a = 2 cm, having a circular opening A
with diameter e = 4mm and a long straight inner duct with

diameter e = 4mm and length b = 2cm, see Fig. 2(a). It

behaves as a SDOF oscillator with the mass mo = ρe|A|b and

stiffness ko = γPe|A|2/V , where V = 4πa3/3 − |A|b is the net

volume of the cavity. That provides the theoretical estimate

(2π)−1
√

ko/mo ≈ 238Hz for the eigenfrequency.

4.2 Impedance tube measurements
Measurements in an impedance tube (B&K type 4206,

circular cross-section ΣT , diameter D = 10cm) are performed

on N = 4 resonators secured at the rigid end of the tube with

their apertures facing up, see Fig. 2(b). A boundary layer

analysis leads to the effective boundary condition v · n = Υp
for waves in the tube, where ΣT plays the role of the period

Σ, and Υ = −NY/|ΣT |. The resonator admittance Y reads :

Y =
|A|2

moωo

iωoω

ω2
o − i2ξoωoω − ω2

(9)

Experiments with a single resonator provide ωo/2π ≈ 253Hz
and ξo ≈ 6.6% that are used in the model. Results are

shown in Fig. 3(a,b). It is confirmed that the resonance leads

to a decrease in amplitude of the reflection coefficient (at

resonance, the absorption coefficient is α = 1 − |R|2 ≈ 0.9)

and a phase shift. Analogous measurements with 4 rigid

spheres reveal a nearly-total reflection, as expected (no flux

produced). The model is accurate despite the poor scale

separation εT = ωoD/c ≈ 0.46, where c = 342 m/s is

the sound speed. Note that the roughness induced by the

resonators leads to a small phase-shift (< π/12 = O(εT ))

neglected in the model at the leading order.

4.3 Anechoic chamber measurements
Anechoic chamber measurements are performed on an

array of 31 × 31 = 961 Helmholtz resonators (identical to

those used in the impedance tube) arranged periodically in

a square lattice (spacing � = 5cm) on a square rigid board

(width L = 1.524m, thickness 12.7mm) with their apertures

facing up, see Fig 2(c). The scale separation is satisfied at

resonance (εo = �ωo/c ≈ 0.23). The source is positioned

above the centre of the board, at the distance H = 2.47m.

The insertion loss IL = −10log|pΓ/p0|2 is shown in Figure

3(c), where pΓ and p0 are the pressure recorded at the surface

with and without the resonators. As expected, the resonance

leads to a sound attenuation at the surface (IL ≈ 3.7 dB

at resonance) related to the absorption of the incident field

(absorption coefficient α ≈ 0.9). Due to the quasi-normal

incidence of the wavefront on the board, the data is compared

with theoretical results for plane wave reflection in normal

incidence. The model predictions (IL = −10log|(1 + R)/2|2,

with R = [1− ρecΥ]/[1+ ρecΥ]), are in good agreement with

the data.
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Figure 3 – Experimental results compared with the model

predictions. (a) amplitude and (b) phase of the reflection

coefficient from impedance tube measurements on 4

resonators or 4 rigid spheres. (c) Insertion loss from

anechoic chamber measurements on 31 × 31 resonators.
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Figure 4 – Numerical model in 2-D and comparison with analytical results. (a) geometry of the resonant surface ; (b) amplitude

and (c) phase of the reflected field against frequency at the distance z = x · n above the surface ; (d) spatial distribution of the

reflected field at the frequency of resonance. Fields are normalized to the incident amplitude pI .

4.4 Numerical validation in 2-D
If the critical coupling ρecΥ = 1 is achieved at some

frequency, the homogenization model predicts a total

absorption of a normally-incident plane wave. In order

to investigate this effect, a case study is performed using

resonators in the form of slotted cylinders. When sufficiently

long, they can be modelled as 2-D Helmholtz resonators

and the Multiple Scattering Theory (MST) can be applied

to solve the problem numerically. The case study deals

with the reflection of the normally-incident plane wave

PI = pI exp(−iωe3 · x/c) from a rigid surface Γ upon which

the 2D Helmholtz resonators are arranged �-periodically,

see Fig. 4(a). Resonators (labelled by j ∈ Z integer) have a

circular cross section with radius a = 2.5cm, a slot facing

up with the width 2e = 4mm (angular opening 2ψ = 2e/a)

and the spacing � = 7cm. The resonators’ centre C j are at

the distance h = 2.7cm from the surface Γ (note h + a < �).
The boundary of the resonator is rigid, except for the slot

where the following conditions are applied : the radial

component of the particle velocity is uniform and equal to

vslot = (Y/|A|)〈ptot〉 where 〈ptot〉 is the mean pressure over the

slot. Inside, the Helmholtz resonator has a perimeter-long,

4mm-wide duct wrapped around the cavity, see Figure 4(a).

A Finite Element Model provides ωo/2π ≈ 230 Hz (basic

mass-spring analysis provide 250Hz). The design is such

that the scale separation is satisfied (εo = �ωo/c ≈ 0.29)

and a damping ξo = 4% is assumed so that ρecΥ = 1 at the

resonance frequency.

Following MST procedure (for instance [8, 9]), the total

pressure field is decomposed into ptot = PI +PR+ pscat where

PR = pI exp(iωn · x/c) is the field reflected from the rigid

surface Γwere the resonators removed and pscat =
∑

j(p j+ p̃ j)

is the field scattered by the resonators array : p j is scattered

by the (physical) resonator j and p̃ j by its mirror-image from

the rigid surface Γ. Due to the periodicity, the contributions

of all resonators j to the scattered field are equal so that,

in the local polar coordinate system (C j, r j, θ j) centred on j
(angle θ j is counted from e2) :

p j(r j, θ j) =
∑
n∈Z

AnHn(kr j)einθ j (10)

where Hn is the Hankel function of the first kind and

order n and An are complex amplitudes (independent

from j). Because of the mirror-image symmetry,

p̃ j(r̃ j, θ̃ j) = p j(r̃ j,−θ̃ j) in the polar coordinate system

(C̃ j, r̃ j, θ̃ j) associated with the image-resonator j. The

coefficients An are found from the boundary conditions

applied to the resonator j = 0. To do so, the fields are

expanded in the coordinate system (C, r, θ) = (C0, r0, θ0)

using the Jacobi-Anger expansion [10] :

{PI + PR}(r, θ) =
∑
n∈Z

UnJn(kr)einθ (11)

where Un =
{
e+ikh + (−1)ne−ikh

}
and Jn is the Bessel function

of the first kind and order n. Using Graf’s addition theorem

[10] for resonators j � 0 :

p j(r, θ) =
∑
n∈Z

∑
m∈Z
Cnm

j AmJn(kr)einθ (12)

and similarly for p̃ j(r, θ) with coefficients C̃nm
j , where :

Cnm
j = Hm−n(k

√
( j�)2)ei(m−n)(β j+π) (13a)

C̃nm
j = Hm+n(k

√
( j�)2 + 4h2)e−i(m+n)β̃ j+imπ (13b)

and β j (resp. β̃ j) is the angle between e2 and CC j (resp. CC̃ j).

The radial component of the velocity vtot = grad(ptot)/iωρe
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at the boundary r = a is expanded using Fourier

decomposition, providing :

∂

∂r
ptot

iωρe

∣∣∣∣∣
a
=

∑
n∈Z

Y
|A| 〈ptot〉 sin(nψ)

nπ
ein(θ− π

2
) (14)

Due to orthogonality, boundary conditions can be formulated

separately for each harmonic einθ. This leads to an infinite

system of equations for the unknown coefficients An, which

is solved numerically by truncation. This gives the pressure

prefl = PR + pscat of the wave reflected from the array.

The field prefl is computed above the resonator j = 0

(abscissa x = x · e2 = 0) and at the distance z = {2�, 3�}
above the surface Γ. It is compared in Fig. 4(b,c) with the

analytical model predictions pR = Reikz. A good agreement

between the MST and the analytical model confirms the

phenomenon of a nearly total absorption at resonance.

A small discrepancy in the phase of the reflected field is

due to the surface roughness ; a similar discrepancy of the

analytical model with measurements has been noted in

Section 4.2. Finally, the spatial distribution of the pressure

prefl is presented in Figure 4(d) at the frequency of resonance

and confirms the existence of the periodic boundary layer.

In accordance with the analytical model, its amplitude is

O(εpI) and it is confined in the close vicinity of the surface

array, with a characteristic distance of evanescence O(�).

5 Conclusion
The characteristic feature of resonant surfaces is the

coincidence within the same frequency range of : long

wavelength dynamics in the supporting layer ; and local

dynamics of the periodically distributed resonators. The

fact that micro-structured materials can show anomalous

properties when inner resonances are involved has been

demonstrated as early as 1985 in elastodynamics [11], and

has since found numerous applications in many branches of

physics with the development of so-called metamaterials.

In this sense, resonant surfaces may be seen as a 2D-

version of metamaterials, that is metasurfaces. Experimental

evidence has been obtained of the efficiency of resonant

surfaces to control wavefields in homogeneous media,

and in particular that of elastodynamic resonant surface to

depolarize mechanical waves. In elastodynamics, results can

be applied to systems from nanoscale [12], using nanotubes

to stabilize their substrate, to geophysical scale [13, 14],

taking into account the presence of high-rise buildings in

seismic engineering. Obvious applications in acoustics and

elastodynamics include noise absorption and wavefield

manipulations.
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