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The propagation of acoustic modes in lined waveguides may be computed numerically. When the mesh is fine
enough, it is current to observe instabilities whose numerical or physical character is difficult to assess. The matter
is even more complicated when the ill-posed Myers boundary condition is used. In this work the 2D linearized
Euler equations are solved in the time domain in order to calculate the propagation of an acoustic mode in a
channel with a rigid top wall and a lined bottom wall. The mean flow is highly sheared at the wall where it satisfies
a no-slip condition so that the Myers impedance boundary condition is avoided. The liner is modeled using a mass-
spring-damper law with a known impedance. This type of liner is often unstable, and a physical instability (surface
wave) is observed when the mesh is refined. The eigenfunction shape and growth rate are compared with that
obtained by solving an eigenvalue problem (linear stability analysis). The role of the numerical selective filtering
in removing the spuriously unstable continuous spectrum is also discussed. An example of rigid/lined/rigid wall is
also shown, where the instability is converted into an acoustic mode of large amplitude at the lined/rigid transition.

1 Introduction
Noise reduction from aeroengines crucially relies on

acoustic linings. These are found in the presence of strong
shear flows and numerical simulations are appealing to
compute sound propagation in this case. For several types
of problems (transient, broadband, nonlinear) it is desirable
to perform the simulation of lined ducts in the time domain
and many recent works have been devoted to time-domain
solvers with appropriate liner boundary conditions [1].
Liners are characterized by their impedance, a quantity
belonging to the frequency domain. However, several
techniques make it possible to use a time-domain impedance
boundary condition (TDIBC). For a mass-spring-damper
(MSD) liner, a simple time-domain implementation is
possible and has been presented by Tam and Auriault [2].
Generally, the presence of the shear flow is an issue. So
as not to describe the details of the boundary layer, one
may introduce a slip velocity at the lined wall of the duct,
and this is usually dealt with by using Myers’ boundary
condition. By using this boundary condition, Li et al. [3]
found an agreement between their numerical predictions and
the benchmark data of Jones et al. [4]. Another possibility is
to suppose that there is a no-slip mean flow at the wall and to
use the regular no-flow boundary condition. This was done
for example in [5] and [6]. Using a parabolic flow, these
studies show a good agreement with the measurement in [4].
Another issue is the stability of the TDIBC, and this is
mainly connected to flow. Tam and Auriault [2] note that
their boundary condition is unstable with a plug flow.
Ozyoruk and Long [7] computations also suffer from
stability problems when using Myers’ boundary condition
with a plug flow. However, their computations based on a
parabolic velocity profile vanishing at the wall are stable[5].
In this particular example, it is difficult to know which
result is actually correct. One one hand, Myers’ boundary
condition is ill-posed [8, 9], meaning that very short
wavelengths can be arbitrarily amplified in time, and it may
spuriously turn a stable flow into an unstable one. On the
other hand, the parabolic velocity profile is not as sheared as
the original experimental turbulent velocity profile, and as a
result its use may render stable an actually unstable flow.
The objective of the present paper is to answer the question
as to whether it is possible to simulate a physical instability
using the linearized Euler equations (LEE) in the time-
domain and to provide a reference unstable configuration.
Instabilities above linings are usually surface waves which
require a refined grid close to the wall in order to be correctly
described. To discard any instability possibly associated
with the Myers boundary condition when using small grid

sizes, Myers’ boundary condition is avoided. The mean
flow thus vanishes at the wall. The impedance model is
kept simple as it consists of a MSD model [2] that can be
implemented easily in a time-domain solver. One way to be
sure of the physical nature of the instability observed in the
LEE is to compare it with the modes calculated by solving
a linear eigenvalue problem (EVP). In the following the
model for the LEE is presented first. The modal equivalent
and the resulting EVP are presented next. A cross-validation
of the LEE solver and the EVP solver is done in a simple
case where the flow is not highly sheared. Finally results
for a velocity profile that has a large shear at the walls are
presented.

2 Problem formulation
The equations describing the problem are the LEE :
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The terms with σ are additional friction terms, while the
terms with s(x) are sponge layer terms used in the numerical
simulation to introduce a wave into the domain or to obtain a
non reflecting boundary condition, as in [10]. The subscript
t indicates target values. The boundary condition at the top
rigid wall is :

v′(1) = 0 (5)

The liner at the bottom wall is taken to be of the MSD type.
The pressure and the normal velocity are then related by the
following equation [2] :

M
∂2v′

∂t2
+ R
∂v′

∂t
+ Kv′ = −

∂p′

∂t
(y = −1) (6)

Equations (2-6) are discretized in space and time and solved
using a 4th order Runge Kutta method for time integration
and the DRP scheme for the spatial derivatives. A selective
filter is used to damp out high wavelength oscillations [11].
For the lined surface, a method comparable to that in Tam
and Auriault [2] is used. Equation (6) is split into two first
order equations according to :

∂v′

∂t
= Q′ (7)
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∂Q′

∂t
=

1
M

[
−
∂p′
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]
(8)

where Q′ is an auxiliary variable that is advanced in time
with the Runge-Kutta scheme. Contrary to what is done in
[2], no pressure ghost point is used : at the lined wall at y=-1,
the boundary condition in Eq. (7) is simply used in place
of the governing equation for the transverse velocity, Eq. (3).

3 Eigenvalue problem
To obtain the modal solutions to Euler Eqs. (1-4), every

fluctuating quantity is written as u′(x, y, t) = û(y)ei(αx−ωt),
where α is the non-dimensional wavenumber, ω is the
non-dimensional angular frequency, and û is a complex
eigenfunction. Injecting this decomposition into Eqs. (1-4),
one obtains (here, the sponge layer term is ignored, s(x)=0,
since it is used only for the numerical simulation of the
LEE) :

i(αU0 − (ω + iσ))û + v̂
dU0
dy
+ iαp̂ = Fy(û) (9)

i(αU0 − (ω + iσ))v̂ +
dp̂
dy
= Fy(v̂) (10)

i(αU0 − ω) p̂ +
(
iαû +

dv̂
dy

)
= Fy( p̂) (11)

and ρ̂=p̂ from Eqs. (1) and (4). In these equations a further
term Fy() has been introduced. It represents a filter in the y-
direction. It may be seen as a high order differential operator
involving y-derivatives. When the equations are discretized,
this filter is replaced by the same discrete selective filter that
is used in the LEE numerical solver, so that the effect of
selective filtering is taken into account in the EVP. The filter
in the x-direction is not taken into account, assuming that
the discretization in the x-direction is sufficiently good. In
the y direction however, the eigenfunction can have sharp
variations, and it is justified to take into account the effect
of the filter in that direction. The boundary conditions (5)
and (6) become :

v̂(1) = 0 (12)
p̂(−1)
v̂(−1)

= −Z(ω) with Z(ω) = R − i
(
Mω −

K
ω

)
(13)

Equation (13) is a classical impedance condition (the minus
sign is due to the normal vector being directed inward).
Equations (9-11) together with boundary conditions (12-
13) form an EVP. This can be solved by discretizing the
equations and solving the resulting matrix EVP [12]. In
[12] the differentiation matrix is based on a Chebyshev
collocation scheme but it may be based on the same DRP
differentiation scheme as used in the LEE solver.

4 Validation
To validate the flow solver, a monochromatic plane wave

at angular frequency ω is introduced into the numerical
domain at x=0, and the pressure field computed using the
LEE solver is compared to a sum of modes :

pmodal(x, y, t) =
Ncuton∑
j=1
a j p̂ j(y)ei(α j x−ωt) (14)

where the modes p̂ j and the corresponding wavenumber
α j are obtained by solving the EVP (9-13) for the given
ω. All the modes should be taken into account in the
sum, but presently only the Ncuton cuton modes are
used. The modal amplitudes, a j, should be such that
pmodal(x = 0, y, t) = g(y, t), where g(y, t) = Ae−iωt
is the imposed plane wave at x=0, with A a complex
amplitude. Obtaining these modal amplitudes is not totally
straightforward because the modes are not normal [13].
Ideally one would use the bi-orthogonality conditions
provided by the adjoint eigenfunctions. To keep things
simple they are presently obtained by solving the following
problem in the least mean square sense, as in [13] :

Ncuton∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
Ny∑
k=1
p̂i(yk) p̂∗j(yk)

⎞⎟⎟⎟⎟⎟⎟⎠︸����������������︷︷����������������︸
=Ti j

ai =
Ny∑
k=1
g(yk) p̂∗j(yk) ∀ j = 1...Ncuton

(15)
where yk, k=1...Ny, are the collocations points, and ∗ denotes
complex conjugation. This is a linear system for the vector
of modal amplitudes and is solved using a pseudo inverse of
T , the matrix with elements Ti j.
The flow is parabolic with peak central velocity U0(0)=0.5.
A plane wave is injected at the inlet with ω=4π. The liner
covering the bottom wall has the following characteristics :
R=0.5, M=0.0625, K=5.33. In such conditions the EVP
shows that the flow is stable. The grid is regular with
Δx=Δy=0.033, and CFL=1. The number of points are
Nx=207 and Ny=61. Ncuton=8 modes are used in (14). The
instantaneous pressure fields obtained by solving the time
LEE and the modal solution (14) are shown in Fig. 1 for an
arbitrary A=1 amplitude at the inlet plane. Both solutions
compare very well. One can observe energy concentration
close to the top rigid wall due to the refraction by the mean
flow, and energy absorption at the bottom lined wall. This
allows a cross-validation of our solvers.

Figure 1 – Pressure field due to a plane wave at the inlet of
the duct with a parabolic mean flow. Comparison between
the instantaneous pressure field computed using the modal
solution and the one computed using the time-domain LEE.
The dashed line indicates the outlet sponge layer limit.
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5 Propagation with highly shear flows
A more realistic velocity profile is considered, which is

an analytical approximation for the one measured by Jones et
al. [4] in their benchmark data at Mach number M0=0.335.
Their experimental configuration is three-dimensional
and the profile in the middle section of the channel is
considered for a 2D simulation, with the following analytical
expression :

U0(y) = (M1 − M2y2)
(
1 − e−(y+1)/δ

) (
1 − e−(1−y)/δ

)
(16)

where M1=0.4, M2=0.124, δ=0.015. Figure 2 compares
the measured profile and that given by Eq. (16). In [3] an
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Figure 2 – Comparison between the measured profile by
Jones et al. [4] in the middle section of their channel and the

analytical expression (16) used in the present paper.
Averaged Mach number : U0=0.335.

instability is observed for the same flow at a frequency
of 1 kHz (corresponding to a normalized ω ∼0.4712389),
and we will thus consider this frequency. The normalized
impedance given by Jones et al. [4] is then Z=0.19-0.15i
(given here for the present time convention). For the MSD
model, the reactance needs to be distributed between the
mass and the spring constant : we take in the following
M ∼1.669248 and K=0.3, with (Mω − K/ω) ∼ 0.15. For the
original resistance, R=0.19, a stability analysis shows that
the modes are fastly oscillating (large αr) and the resolution
necessary to compute these modes would require two much
computational effort. Hence, the resistance value is increased
and the value R=1.2 or R=4 is used in the following.

5.1 Stability analysis
A wavenumber spectrum for R=1.2 and ω=0.47 is shown

in Fig. 3. An unstable surface mode can be seen (checked
using a Briggs-Bers criterion) with αi <0. By tracking this
mode when varying the frequency, the curve α(ωr) can be
obtained and the imaginary part (the opposite of the growth
rate) is shown in Fig. 4. It evidences a resonance frequency
at ω ∼0.47 corresponding to a maximal growth rate. For
a resistance R=4 the resonance frequency is decreased to
ωr ∼0.15 and the growth rate is smaller. It is important
to note that the EVP, when integrated along the real line
y∈ (−1, 1) would fail to capture the surface mode when it
becomes stable. To follow that mode in its stability region
(αi >0), as in Fig. 4, a detour in the complex y-plane has
to be done. In addition the detour cannot be arbitrary and is

chosen so that the solution to the inviscid problem following
that contour is the same as the solution to the viscous
problem. While this analytical construction can be done in
the EVP, it is more difficult to achieve in the LEE solver
where y has to be real. However, the next section shows that
using selective filtering in the LEE plays a similar role to
using a complex mapping in the EVP.
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Figure 3 – Spectrum for R=1.2, σ=0, ω ∼0.47.
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Figure 4 – Evolution of αi (the opposite of the spatial
growth rate) with real ωr, for two different values of R.

5.2 Continuous spectrum and selective
filtering

In addition to the surface mode, the continuous spectrum
is seen in Fig. 3. This should lie along the real axis, but
a bulge is observed which is located in the bottom plane,
indicating that the continuous spectrum is made of spurious
instabilities (the modes have αi <0 and propagate in the
x > 0 direction). This bulge is apparently related to a surface
mode nearby, be it stable or unstable, and would not be seen
for a rigid wall. In the present case with ω=0.47 the flow
is unstable and the physical instability has a much larger
growth rate than the spurious components of the discrete
spectrum. However, for some frequencies, the flow may
be stable while the continuous spectrum is unstable, as
it is the case in Fig. 5 for ω=0.8. One characterictics of
the ”modes” of the continuous spectrum is that they have
a discontinuous axial velocity at the critical layer. And
one expects suppressing these modes by using a low pass
filter that damps these modes. A selective filter is precisely
used in the LEE and the effect of the selective filter (in the
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Figure 5 – Spectrum for R=1.2, σ=0, ω ∼0.8. Chebyshev
N=200. Without selective damping.

y-direction only) may be accounted for in the EVP as well.
The effect on the spectrum at ω=0.8 is seen in Fig. 6 where
the magnitude of the filter corresponds to a realistic LEE
solution. Compared to the spectrum without damping, the
continuous spectrum has been shifted to the αi >0 plane,
meaning that the modes are not unstable anymore. It should
be said that this shift is not systematic and has more chance
to be effective with a high resolution method (A Chebyshev
method with many points will shift the continuous spectrum,
while a DRP scheme with fewer points may leave some
modes of the continuous spectrum in the bottom α-plane).
An alternative view of the effect of selective filtering is
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Figure 6 – Spectrum for R=1.2, σ=0, ω ∼0.8. Chebyshev
N=200. With selective damping.

seen when tracking the surface mode wavenumber while
changing ω ∈ R, as shown in Fig. 7. The correct result is for
the complex contour y (dotted line, this is the same result as
in Fig. 4). For a real y ∈ (-1,1) and no damping (dashed line),
the mode is correctly described whenever it is unstable and
then get lost amidst the continuous spectrum for ωr >0.65.
The dashed line for ωr >0.65 is actually made of modes
of the continuous spectrum. When solving numerically
the LEE it is not possible to work in the complex y-plane
as for the EVP. But the result obtained with a real y and
the selective filtering (plain line) actually approaches the
result obtained with a complex map. The reason is that the
selective filter shift the continuous spectrum in the upper
α-plane, thus leaving some room for the surface mode to

be tracked correctly. Of course, the effect of the selective
filtering is to add some dissipation, which regularizes
the inviscid problem, and the complex map (or physical
viscosity) acts in the same way. The conclusion here is that
for a sufficiently fine discretization the selective filtering
removes the spurious continuous spectrum, leaving just the
physical instability.
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no damping, real map
no damping, complex map
damping, real map

Figure 7 – Tracking of the surface mode wavenumber
imaginary part (inverse of the growth rate) when varying

real ω. R=1.2, σ=0. Chebyshev N=200.

5.3 Physical instability
The flow is now computed using the LEE in order to see

whether the physical unstable mode predicted by solving the
EVP can be observed numerically. To trigger an instability,
it is necessary to introduce some kind of perturbation
into the flow. This could be achieved by emitting a pulse
above the material. Alternatively, we introduce at the
input of the computational domain an acoustic wave of
given frequency ω=0.47. If the medium does not contain
initially any perturbation, switching on the acoustic wave
is sufficient to introduce the desired perturbation. Even if
the acoustic mode is used to set up an initial field within
the computational domain (including auxiliary variables),
an instability develops due to numerical noise, filtering, or
imperfect sponge layers.
For R=1.2, an instantaneous pressure field is shown in
Fig. 8. A short wavelength surface instability develops

Figure 8 – Pressure snapshot. Nx=950, Ny=200.

against the large wavelength acoustic field. As time passes
by, the wavepacket move toward x >0 while growing in
amplitude. Ultimately it reaches a huge amplitude and even
a small reflection of this by the output sponge layer ends
up affecting the input sponge layer. The evolution of the
logarithm of the pressure modulus with x is shown at a later
time in Fig. 9. Upstream of the wave front, the envelope of
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Figure 9 – ln(|p(x)|) vs x. R=1.2. t/Tac ∼27.

this evolution is linear and indicates an exponential spatial
growth. By considering consecutive streamwise positions
over a wavelength (the position is shown by a vertical thick
line in Fig. 9), it is possible to extract the wavenumber
and the eigenfunction of the observed instability. The
time evolution at the same spatial positions provides the
frequency of the wave. This information can be compared
with the EVP result. Comparison for several cases is shown
in Table 1. In this table, ωmax is the frequency for maximal

Table 1 – Characteristics of the instability wave.

Config
EVP LEE

ωmax αmax ωmax αmax

R=1.2, Ny=200 0.46 11.3-3.96i 0.47 12.4-4.06i

R=1.2, Ny = 100 0.43 0.45 11.2-3.3i

R=4, Ny=200 0.15 4.9-0.87 0.16 5.37-0.885i

spatial growth rate, and αmax is the corresponding wave
number. For R=1.2, the frequency for maximal spatial
amplification is about 0.47, which also corresponds to the
frequency of the injected acoustic wave. The frequency
observed in the LEE corresponds to this value. For R=4, the
frequency for maximal spatial amplification given by the
EVP is about 0.15, and it is not too far from the observed
frequency with the LEE. In that case, the natural frequency
is observed despite the input acoustic forcing is at ω=0.47.
As said before, the input is probably imperfect in some sense
so that it excites many frequencies, not just the forcing one,
and only the most amplified frequency emerges from all the
waves.
The eigenfunction modulus and phase of the axial

velocity û are compared in Figs. 10-11. It is seen that
the agreement is very good. It is clear that the instability
observed in the LEE is physical and can be predicted by
solving the EVP.
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Figure 10 – Modulus of the eigenfunction. R=1.2, Ny=200.
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Figure 11 – Phase of the eigenfunction. R=1.2, Ny=200.

5.4 Rigid/Lined transition
The bottom wall is now made of three sections : a

rigid one, a lined section, and finally a rigid section again.
The same geometry as in Jones et al. [4] is considered.
The quasi-plane mode (solution of the EVP) is introduced
through the left sponge layer with frequency ω=0.47, and
the liner is the same as previously with R=4 (chosen because
the growth rate remains moderate in this case). Note that
while the geometry and flow are similar to that of Jones et
al. the lining properties have been chosen more arbitrarily
(the liner is unstable with maximal growth rate at ω ∼0.16).
Several pressure snapshots are presented in Fig. 12. At the
first instant considered (Fig. 12(a)), an unstable wavepacket
has already formed at and detached from the leading edge
of the liner and is travelling downstream. The frequency
content of this wave packet corresponds to the unstable
surface waves predicted by the EVP. In Fig. 12(b) this
wave packet impinges the trailing edge of the liner and
this produces high amplitude acoustic waves upstream
and downstream. A a later time, Fig. 12(c), the intense
acoustic radiation created by the wave packet crossing
the liner/rigid transition is still present. The wave packet
which has crossed the limit of the lined region through
the right boundary propagates downstream along the rigid
boundary while being damped (it is assumed that this wave
packet is formed of modes of the continuous spectrum
of the rigid wall but this has not been investigated). A
new wave packet appears at the leading edge of the liner.
This wave packet has its amplitude growing while moving
downstream, as seen in Fig. 12(d), and this amplitude
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(a)

(b)

(c)

(d)

Figure 12 – Snapshots of the pressure at several instants.
Rigid/lined/rigid bottom wall. R=4. The rigid/liner transition
and the liner/rigid transition are indicated by a vertical line.

is more important that the one of the first wave packet
amplitude seen in Fig. 12(a). When this new wave packet
impinges the trailing edge of the liner, it produces a new
acoustic wave of large amplitude (not shown). The injected
acoustic mode has not been turned off but it seems that the
process can sustain itself without this mode, meaning that
the flow becomes absolutely unstable following a pressure
feedback due to reflections at lined/rigid transitions (the liner
is only convectively unstable). Of course this needs to be
investigated further. It is likely that the mesh refinement at
the rigid wall / liner transition plays an important role. Also,
as the acoustic waves travelling from the liner to the exit of
the computational domain have an increasing amplitude, it
is important to have a very good non-reflecting boundary
condition.

6 Conclusion
The propagation in a lined channel has been computed

numerically using the LEE in the presence of a mean velocity
profile having a large shear and null velocity at the walls.
The liner model at the bottom wall is a Mass-Spring-Damper
system and the impedance is imposed without using the
Myers boundary condition. A physical instability has been

observed whose characteristics can be predicted by solving
a matrix EVP. The role of the numerical selective filtering in
removing the spuriously unstable continuous spectrum has
been discussed. It has also been shown that unstable modes
above liners create strong acoustic modes at rigid wall / liner
transitions.
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