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A semi-analytical finite element method for studying acoustical behavior of heterogeneous poroelastic
media is presented. Particularly we are interested in studying unidirectionally heterogeneous (multilayer
or functionally graded) waveguide coupled with fluids. Biot’s theory for anisotropic poroelastic medium is
used. By transforming the wave equation into the frequency and wavenumber domain (which corresponds
to homogeneous direction), one-dimensional finite element formulations are derived to numerically solve
the equation in the heterogeneous direction. Numerical examples show that the proposed method is
efficient for estimating the the reflection and transmission coefficients of porelastic plates.

1 Introduction

Modeling of wave propagation in porous waveguide
has received much of attention in the past. It
is motivated by characterization and optimization
problems of different materials such as sound absorbing
materials, industrial foams, biological materials (such
as bone or wood), concrete, sandstone, etc. In many
case of these applications, the macroscopic mechanical
property of these waveguides is relatively homogeneous
along longitudinal direction but inhomogeneous (with
functionally graded or layered profile) in the cross
section.

In this paper, the ultrasonic wave propagation in
fluid saturated anisotropic waveguide is studied. By
assuming that the wavelengths are larger than the
average pore size and the porous medium is completely
saturated by a fluid, the Biot’s theory, which has been
widely employed in many applications, is used here.

In order to study the wave propagation problem
in functionally-graded/layered waveguides in the
frequency domain, analytical methods, such as
direct stiffness matrix method [2, 5], are usually
used. Alternatively, for considering waveguides with
geometrical and mechanical properties which are
constant only along one or two directions, the Hybrid
Numerical Method (HNM, see e.g. [3]), alternatively
called Semi-Analytical Finite Element method (SAFE,
see e.g. [1, 4]), have been employed. The key point
of this method consists in using a hybrid algorithm
which begins by employing the Fourier transform (with
respect to time and to the longitudinal direction of the
waveguide) to transform problem into the frequency-
wavenumber domain. Then, the wave equations in the
spectral domain governed in cross-section (or even a 1D
domain in the case of infinite plates or axisymmetric
wave-guides), which may actually have inhomogeneous
material properties, can be easily handledusing the
finite element method [4].

In this paper, we present a procedure for computing
the reflection and transmission coefficients of anisotropic
poroelastic plate by using SAFE method.

2 Governing equations

2.1 Problem description

Let R(O; e1, e2) be the reference Cartesian frame
where O is the origin and (e1, e2) is the orthonormal
basis for the bi-dimensional space. The coordinates of
a point x ∈ R are denoted by (x1, x2) and the time
is denoted by t As shown in Figure 1, we consider a
poroelastic layer with thickness h, which occupies the
unbounded domain Ωb in e1 direction, is surrounded by

two fluid half-spaces Ωf
1 and Ωf

2 . The interfaces between

the poroelastic layer Ωb and the fluid domains Ωf
1 and

Ωf
2 are assumed to be flat and denoted by Γbf

1 and Γbf
2 ,

respectively.
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Figure 1: Geometry description

The surrounding fluids in Ωf
1 and Ωf

2 are assumed
to be homogeneous and inviscid. The layer Ωb is
assumed to be a fully saturated and transversely
isotropic poroelastic medium. We also assume that the
physical properties of the porous layer is homogeneous
along its longitudinal direction (e2) but may have
an inhomogeneous profile in its depth direction
(e1). Despite the fluid viscosity is neglected in the
surrounding fluid domains, it is taken into account in
the porous plate pores.

A plane and harmonic wave with an angular
frequency ω, propagating in the upper fluid domain,
is incident under angle θI to the interface Γbf

1 . To
determine the reflection and transmission coefficients
of the poroelastic layer, we assume a time-dependence
e−iωt (i =

√−1) for all movement quantities Y (x, t),
i.e Y (x, t) = y(x, ω)e−iωt. In the follows, the term ω in
y(x, ω) will be omitted for simplification purposes.

2.2 Equations for wave propagation in
the fluids (Ωf

1
and Ωf

2
)

We denote by ρ1, ρ2 the mass densities and c1, c2 the
wave celerities of the fluids in Ωf

1 and Ωf
2 , respectively.

In these domains, the Helmholtz and Euler equations
read

− ω2

c2n
p(n) − p

(n)
,jj = 0, (1)

− iωu(n) +
1

ρn
p
(n)
,j = 0, (2)

where p(n) and u
(n)
j denote the pressure and components

of displacement vector of the fluid in Ωf
n (n = 1, 2).

Let us consider an incident plane acoustic wave
pI propagating with a pulsation ω in the upper fluid
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domain Ωf
1 and arriving to the interface Γbf

1 from

an angle θI . Then the total pressure in Ωf
1 may be

expressed by: p(1) = pI + pR where pR is the reflection
plane wave field. By denoting k0 = ω

c1
the wavenumber

of pI in in Ωf
1 , the pressure field pI should satisfy (1) and

is expressed by pI = PIe
i(k1x1−k

(1)
2 x2), where PI denotes

the wave amplitude; k1 = k0 sin θI and k
(1)
2 = k0 cos θI .

As a consequence, pR = PRe
i(k1x1+k

(1)
2 x2) where PR is

the amplitude of the reflected wave.
Similarly, the solution of plane the transmission wave

in Ωf
2 reads:

p(2) = PT e
i(k1x1+k

(2)
2 (x2+h)), (3)

where PT is the amplitude of the transmitted wave and

k
(2)
2 =

√
ω2

c22
− k21 .

2.3 Wave propagation in the anisotropic
poroelastic layer

The constitutive equations for an anisotropic
poroelastic material are given by

σjk = Cjklmεlm − αjk p , (4)

− 1

M
p = wj,j + αjkεjk , (5)

where σjk denote the components of the total stress
tensor; εjk denote the components of the strain
tensor: εjk = 1

2 (uj,k + uk,j) with uj are components
the solid skeleton’s displacement vector; wj is the
fluid/solid relative displacement weighted by the

porosity: wj = φ(uj − u
f
j ) with u

f
j denote the fluid

displacements and φ denotes the porosity; αjk are the
Biot effective coefficients and M is the Biot’s modulus.

Neglecting the body forces (other than inertia),
the equations describing the linear poroelastic wave
propagation in the frequency domain read:

σjk,k = −ω2ρ uj − ω2ρf wj , (6)

−p,j = −ω2ρf uj − ω2ãjkwk , (7)

where ρ = φρf+(1−φ) ρs is the mixture density, with ρs
and ρf are the solid and fluid densities, respectively; ãij
are component of a frequency dependent visco-dynamic
tensor which depends on the permeability and tortuosity
of the medium. For a transversely isotropic poroelastic
material, ã is a diagonal tensor of which ãjj , j = 1, 2
are the dynamic tortuosity in e1 and e2 directions and
may be estimated by

ãj(ω) =
ρf

φ

(
a∞j +

iφηFj(ω)

ωρfκj

)
(8)

where a∞j is the static tortuosity, η is the viscosity of
the interstitial fluid, κj is the intrinsic permeability in
direction j; Fj(ω) are the correction factors which are
introduced to take into account the viscous resistance
of the fluid flow at high frequencies. We recall that
all mechanical characteristics above are x2-dependent
functions.

In the sequel, we rewrite the equations below in
matrix form. Let us then use Voigt’s notation which

expresses the symmetric second-order tensors as vectors,
so the stress is denoted s = {σ11, σ22, σ12}T , the strain
by e = {ε11, ε22, 2ε12}T , the Biot effective coefficients
by α̌ = {α11, α22, α12}T where the superscript �T

designates the transpose operator. We also introduce
an operator L which takes the form: L = L1∂1 + L2∂2
with:

L1 =

⎡
⎣1 0
0 0
0 1

⎤
⎦ , L2 =

⎡
⎣0 0
0 1
1 0

⎤
⎦ , (9)

where ∂1 and ∂2 denote the partial differentiation
operators with respect to x1 and x2, respectively.
Using these notations, the balance equations of linear
momentum (6)-(7) may be rewritten as:

− ω2ρ u− ω2ρfw − L
T
s = 0, (10)

− ω2ρfu− ω2
ã w + L

T
mp = 0, (11)

where m = {1, 1, 0}T . The constitutive equations (4)-
(5) read:

s = C e− α̌ p, (12)

p = −M
(
m

T
Lw + α̌

T
Lu

)
, (13)

where C is the drained elastic tensor using Voigt’s
notation:

C =

⎡
⎣C11 C12 C16

C12 C22 C26

C16 C26 C66

⎤
⎦ . (14)

By noting that e = Lu and by substituting Eq. (13)
into Eq. (12), the constitutive equations (12)-(13) may
be written by

s = Cu L u+Cα L w, (15)

mp = − (
CMLw +C

T
αLu

)
, (16)

where Cu = C + Mα̌α̌
T , Cα = Mα̌m

T , CM =
Mmm

T . The tensor Cu is known as the undrained
elasticity tensor which represents the rigidity of
an equivalent elastic medium in which the relative
movement between the interstitial fluid and solid
skeleton is vanished (i.e. when w = 0).

By considering the plane wave nature of presented
problem, the solutions of Eqs. (10) and (11) may be
taken under the form: y(x1, x2) = ŷ(k1, x2)e

ik1x1 .
Noting that the operator L now becomes L =
ik1L1 + ∂2L2, one has:

−ω2
A1v + k21A2v − ik1A3∂2v − ∂2� = 0, (17)

where

v =

(
û

ŵ

)
, � =

(
L
T
2 ŝ

−L
T
2 mp̂

)
= ik1A

T
3 v +A4∂2v, (18)

and

A1 =

[
ρ1 ρf1

ρf1 ã

]
, A2 =

[
C

11
u C

11
α(

C
11
α

)T
C

11
M

]
, (19a)

A3 =

[
C

12
u C

12
α(

C
21
α

)T
C

12
M

]
, A4 =

[
C

22
u C

22
α(

C
22
α

)T
C

22
M

]
.

(19b)
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In the expressions ofA2,A3 andA4, the 2-by-2 matrices
C

ab
u ,Cab

α and C
ab
M with a, b = 1, 2 are defined by:

C
ab
u = L

T
aCuLb, C

ab
α = L

T
aCαLb, C

ab
M = L

T
aCMLb.

(20)

2.4 Boundary conditions at interfaces

At both interfaces Γbf
1 and Γbf

2 , the continuity of
pressure and stress fields between the porous medium
and the fluid domains requires. In addition, open-pore
condition at the interfaces Γbf

n (n = 1, 2) is assumed,
requiring the continuity of normal fluid velocities. By
writing the harmonic forms of the solutions (p(n) =
p̂(n)eik1x1) and by noting that the normal unit vectors

of Ωb at two interfaces Γbf
1 and Γbf

2 (see Fig. 1) are

defined by: n
bf
1 = −n

bf
2 = {0, 1}T , the conditions at

the interfaces may be expressed as follows:

û2 + ŵ2 =
1

ρnω2
∂2p̂

(n) (21a)

p̂ = p̂(n) (21b)

t̂ = { 0,−p̂(n)}T (21c)

for ∀x ∈ Γbf
n , (n = 1, 2) where the traction vector t̂ is

defined by t̂ = L
T
2 ŝ = {σ̂21, σ̂22}T .

3 Finite element formulation

The weak formulation of the boundary value
problem presented in (17) and (21a) may be now
carried out using an usual procedure. Let C ad be
the set of admissible functions constituted by the
sufficiently differentiable complex-valued functions.
The conjugate transpose of δv is denoted by δv∗. Upon
integrating (17) against a test vector function δv and
applying the Gauss theorem, then using the boundary
condition (21c), the weak formulation of Eq. (17) reads:

− ω2

∫ 0

−h

δv∗
A1v dx2 + k21

∫ 0

−h

δv∗
A2v dx2

+ ik1

∫ 0

−h

(
∂2(δv

∗)AT
3 v − δv∗

A3∂2v
)
dx2

+

∫ 0

−h

∂2(δv
∗)A4∂2v dx2 + δv∗(0)d p̂(0)

− δv∗(−h)d p̂(−h) = 0, ∀ δv ∈ C
ad,

(22)

where d = {0, 1, 0, 1}T . In this weak formulation (22),
the pore pressure p̂ at x2 = 0 and at x2 = −h are
unknown variables but may be determined in terms of
the displacement by using the conditions (21a)-(21b)
and by taking into account the forms of general solutions
in fluid domains presented in Section 2.2. First at the
upper interface (x2 = 0):

ω2 (û2 + ŵ2) =
ik

(1)
2

ρ1
(−PI + PR), (23a)

p̂ = PI + PR, (23b)

which lead to an impedance boundary condition:

p̂(0) =
ρ1ω

2

ik
(1)
2

(û2(0) + ŵ2(0)) + 2PI , (24)

Similarly the impedance boundary condition at the
lower interface (x2 = −h) reads

p̂(−h) = −ρ2ω
2

ik
(2)
2

(û2(−h) + ŵ2(−h)). (25)

By noting that û2+ ŵ2 = d
T
v and by substituting Eqs.

(24-25) into (22), we obtain

− ω2

∫ 0

−h

δv∗
A1v dx2 + k21

∫ 0

−h

δv∗
A2v dx2

+ ik1

∫ 0

−h

(
∂2(δv

∗)AT
3 v − δv∗

A3∂2v
)
dx2

+

∫ 0

−h

∂2(δv
∗)A4∂2v dx2 + δv∗(0)Dv(0)

+ δv∗(−h)Dv(−h) = −2PIδv
∗(0)d,

∀δv ∈ C
ad,

(26)

where D = dd
T . We introduce a finite element

discretization of the domain [−h, 0] which contains nel

elements: [−h, 0] =
⋃

e Ωe with e = 1, ..., nel. By using
the standard Galerkin method, both functions v and
δv in each element Ωe are approximated using the same
shape function:

v(x2) = NeVe, δv(x2) = NeδVe, ∀x2 ∈ Ωe, (27)

where Ne is the shape function, Ve and δVe are the
vectors of nodal solutions of v and δv within the element
Ωe, respectively. Substituting Eq. (27) into Eq. (26) and
assembling the elementary matrices lead to a system of
linear equations: (

K
b +K

Γ
)
V = F, (28)

where V is the global nodal solution vector; Kb is the
global “stiffness matrix” of the poroelastic layer; KΓ

represents the coupled operator between the fluid and
poroelastic layers; the vector F is the external force
vector due to the incident waves. Noting the number
of nodes by N , the size of vectors V and F is neq = 4N
because each node has 4 degrees of freedom. The sizes
of Kb and K

Γ are neq × neq.

K
b = −ω2

K1 + k21 K2 + ik1 K3 +K4 (29a)

K
Γ
jk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ2ω
2

ik
(2)
2

if (j, k) = (2, 2), (2, 4), (4, 2), (4, 4)

ρ1ω
2

ik
(1)
2

if (j, k) = (neq − 2, neq − 2),

(neq − 2, neq), (neq, neq − 2), (neq, neq)
0 otherwise

(29b)

Fj =

{ −2PI if j = neq − 2, neq

0 otherwise
(29c)

where the matrices K1,K2,K3 and K4 are defined by:

K1 =
⋃
e

∫
Ωe

N
T
e A1Ne dx2,

K2 =
⋃
e

∫
Ωe

N
T
e A2Ne dx2

K3 =
⋃
e

∫
Ωe

2
{
(∂2Ne)

T
A3Ne

}
a
dx2,

K4 =
⋃
e

∫
Ωe

(∂2Ne)
T
A4 (∂2Ne) dx2,

(30)
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in which the notation {�}a designates the anti-
symmetric part of the {�}.

After having solved the system of equations (28), the
reflection (R) and transmission coefficients (T ) can be
computed:

R =
ρ1ω

2

ik
(1)
2

× û2(0) + ŵ2(0)

PI

+ 1, (31a)

T = −ρ2ω
2

ik
(2)
2

× û2(−h) + ŵ2(−h)

PI

. (31b)

4 Numerical examples

To validate the proposed formulations, we consider
a homogeneous anisotropic poroelastic bone plate
immersed in fluid. The interstitial fluid in porous
medium is also assumed to be the same as the
surrounding fluid domains, of which the mechanical
properties are: ρf = 1 000 kg.m−3 et Kf = 2.25 GPa.
The poroelastic material properties are given by:
φ = 0.15, ρs = 1 722 kg.m−3, cu11 = 23.1 GPa,
cu22 = 1.51 GPa, cu12 = 6.28 GPa, cu66 = 4.8 GPa,
cu16 = cu26 = 0, α11 = 0.28, α22 = 0.36. The
viscosity of interstitial fluid is η = 1 × 10−3 Pa.s
and the permeability tensor is roughly taken by
κ11 = κ22 = 5 × 10−13 m2 The thickness of the bone
plate is 4 mm.
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Figure 2: Reflection (R) and transmission (T )
coefficients versus incident angle θ

Figure 2 presents the variation of the reflection
and transmission coefficients with respect to the

incident angle θ. The frequency of the incident wave
is 1MHz. Both analytical and finite element solutions
are presented. It may be seen that the FE solutions
are perfectly matched with the analytical one. In
order to get a better accuracy in high frequency,
the spectral element method [7] have been employed
been used. For this example, the bone plate has
been discretized by only one 13 nodes element. The
elementary matrices have been computed based upon
the Gauss-Lobatto-Legendre integration rule.

5 Conclusion

A semi-analytical finite element formulation has
been developed for analyzing acoustic response of
a heterogeneous anisotropic poroelastic plate. The
proposed method allows us to compute with high
precision the reflection and transmission coefficients.
Moreover, it has been shown that using the spectral
elements with high-order interpolation functions give
better results in comparing with the ones obtained by
using the conventional finite elements. Moreover, it
is straightforward to compute the dispersion relation
(ie phase velocity and attenuation) of a heterogeneous
anisotropic poroelastic plate by using developed
formulations.
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