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The Portuguese guitar is a pear-shaped instrument with twelve metal strings, descendant from the
renaissance European cittern. This instrument is widely used in Portuguese traditional music, mainly
in Fado, and more recently also started to play a considerable role among urban Portuguese musicians.
Unlike most common guitars, this guitar has a bent soundboard (arched top) with a bridge somewhat
similar, although smaller in height, to the bridge of a violin. In spite of the large amount of research
aiming the understanding of guitar dynamics, few results are currently available on the Portuguese guitar.
Coupling between the different vibrating sub-systems of a musical instrument is a very important feature,
the reason why instruments of similar families have such different and characteristic sounds. Our recent
work on this topic was somewhat restricted by several simplifications, including the assumption of planar
string motions and an extremely simplified soundboard. In the present paper those restrictions are relaxed
in the following manner : (a) A model for coupling the in-plane and out-of-plane string motions through
the bridge kinematics is produced ; (b) A more realistic representation of the instrument dynamics is
obtained through finite-element modelling of the soundboard typical of Portuguese guitars. We thus
produce a set of time-domain simulations, based on coupling the unconstrained modes of the various
sub-systems (12 strings and the soundboard). These computations enable, in particular, to assert the
dynamical significance of the string region beyond the bridge (the so-called “dead side” of the strings).
Also, these simulations enable a close tracking of the energy flow between the instrument sub-systems, in
connection with sympathetic vibrations, beating phenomena and the sound identity of this instrument.

1 Introduction

Coupling the vibrations of various subsystems is
an essential issue for developing physically accurate
synthesis methods of any musical instrument. Actually,
the sound produced by an instrument results from
the mutual interaction of its components and it is the
reason why instruments of similar families have such
different and characteristic sounds. This is particularly
significant for string instruments where the intensity
of the sound radiated is conditionned by the efficiency
of the energy transfers between the strings and the
instrument body which pass through the bridge.
Although it has a profound influence on the sounding
properties of the played tone [1, 2], it seems remarkable
that the bridge is often considered to simply enforce a
node for the string vibration [3, 4]. One typical example
is the occurence of the troublesome wolf-note, mostly for
cellos, which emerges when the bridge ceases to act as
a rigid boundary for the waves travelling on the string.
The net result is the transfer of some vibrational energy
of the string to both the instrument body and the dead
part of the string, between bridge and tailpiece, which
leads to a difficult control of the played note [5, 6, 7].
Other specific issue of stringed instruments closely
related to the bridge action is the coupling between
the vertical and horizontal polarisation of the string
motion which actually occurs in two perpendicular
planes. Nevertheless, other possible mechanisms may
influence such coupling, namely string inhomogeneities
and non-isotropic supports or the intrinsic geometrical
nonlinearity of the vibrating string - see the interesting
analysis by Elliott [8]. However, despite sophisticated
models especially for guitar pluck [9, 10, 11], the
physical mechanisms for coupling the string motions
directions are still debatable. In the present paper, we
will tentatively assume that the sole mechanism lays
on simple kinematical relations stemming from the
soundboard/bridge motion as discussed later.

Following our previous work on the dynamical
modelling of the Portuguese guitar [12], we extend
here significantly our physical model of a 12-string
guitar coupled to a body via a bridge to include

string vibration with both polarisations and propose
a coupling model for the string modes, so that energy
can be exchanged between the perpendicular directions
of the string motion. Furthermore, to provide more
realistic simulations, the model to be used involves
the modelling of the top plate of a Portuguese
guitar by Finite-Element Method (FEM). Using
the modal parameters estimated through the FEM
analysis, a modal synthesis technique was developed
in order to simulate the fully coupled model of twelve
strings vibrating in two perpendicular directions and
interacting with the instrument soundboard via the
bridge. By examining the energy transfer between the
various subsystems of the model, the paper attests
the relevance of the proposed approach to couple the
string motions. Time-domain simulations highlight
that a vertical plucked excitation may excite horizontal
vibration of the string, and also that several strings
may be excited by sympathetic vibrations when only
one string is excited initially. Also apparent in our
computations - and rarely treated in the literature - is
the excitation of the dead part of the string which may
influence, to some degree, the tone of the instrument.

2 Presentation of the model

2.1 String dynamics

The string model concerns small-amplitude
vibrations and includes both polarisation of string
motion, normal and parallel to the soundboard. We
consider a set of s = 1, . . . , S perfectly flexible strings
of total length L (from the atadilho, a small tailpiece at
the end of the body of the instrument, to the neck) and
density ρs, stretched to an axial tension Ts. The strings
are rigidily fixed at both ends and stretched over the
bridge, so that their natural frequencies are lower than
the sounding frequencies defined by the active length
of the string, i.e the distance between the bridge and
the neck. Adopting a modal framework, the transverse
motions of the string in the planes parallel and normal
to the soundboard, at position x and time t, denoted
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Ys(x, t) and Zs(x, t) respectively, are given by :

Ys(x, t) =

Ns∑
n=1

q ys
n (t)φ ys

n (x), (1a)

Zs(x, t) =

Ns∑
n=1

q zs
n (t)φ zs

n (x) (1b)

where φ ys
n (x) = sin(nπx/L) and φ zs

n (x) = sin(nπx/L)
are the string mode shapes in both planes of
polarization, and q ys

n (t) and q zs
n (t) represent their

corresponding modal amplitude responses, Ns being
the size of each string modal basis. Then, the free
response of string s can be formulated as a set of 2Ns

ordinary second-order differential equations as :

mys
n q̈ ys

n (t) + c ys
n q̇ ys

n (t) + kysn q ys
n (t) = Fys

n (t) (2a)

mzs
n q̈ zs

n (t) + c zs
n q̇ zs

n (t) + kzsn q zs
n (t) = Fzs

n (t) (2b)

where mys
n , kysn , c ys

n , mzs
n , kzsn and c zs

n are the modal
masses, damping values and stiffnesses for each of the
two orthogonal mode families, given by :

kysn = m ys
n (ω ys

n )2 , c ys
n = 2m ys

n ω ys
n ζ ys

n (3a)

kzsn = m zs
n (ω zs

n )2 , c zs
n = 2m zs

n ω zs
n ζ zs

n (3b)

Other modal parameters are the circular modal
frequencies ω ys

n and ω zs
n and the modal damping

values ζ ys
n and ζ zs

n which account for both internal and
acoustical dissipation. The modal forces Fys

n (t) and
Fzs

n (t) are obtained by projecting the external force
f(x, t) on the mode shapes of the modal basis, as :

Fys
n (t) =

∫ L

0

f(x, t)φ ys
n (x)dx (4a)

Fzs
n (t) =

∫ L

0

f(x, t)φ zs
n (x)dx (4b)

The external force field for the strings here includes the
effects of the finger/string interaction during the pluck,
the body coupling via the bridge, and the stopping fret
when the musician presses the string on the fingerboard.
The corresponding horizontal and vertical modal forces
are thus given respectively by :

F ys
n (t) = F b

Ys
(t)φ ys

n (xb
s) + F f

Ys
(t)φ ys

n (xf
s )+

F e
Ys
(t)φ ys

n (xE
s ) (5a)

F zs
n (t) = F b

Zs
(t)φ zs

n (xb
s) + F f

Zs
(t)φ zs

n (xf
s )+

F e
Zs
(t)φ zs

n (xE
s ) (5b)

where F b
Ys
(t) and F b

Zs
(t) are the horizontal and vertical

forces between the string and the bridge, φ ys
n (xb

s) and
φ zs
n (xb

s) being the string modeshapes at the bridge

location, F f
Ys
(t) and F f

Zs
(t) are the horizontal and

vertical forces between the string and the fret and
φ ys
n (xf

s ) and φ zs
n (xf

s ) the string modeshapes at the fret
on the fingerboard, and finally, F e

Ys
(t) and F e

Zs
(t) are

the horizontal and vertical forces between the string
and the excitation finger with φ zs

n (xe
s) and φ zs

n (xe
s)

the string modeshapes at the finger excitation. Note
that the modal frequency and damping value can
be adjusted easily in our modal modelling to allow
for small bending stiffness in the string as well as
frequency-dependent damping effects.

2.2 Soundboard dynamics

The transverse response of the soundboard to the
motion of the bridge can be represented by a simplified
modal model :

mSB
n q̈ SB

n (t) + cSB
n q̇ SB

n (t) + kSBn q SB
n (t) = FSB

n (t) (6)

where mSB
n , cSB

n and kSBn are the soundboard modal
parameters, and q SB

n (t) the soundboard modal responses
(n = 1, . . . , NSB). As for the strings, the modal forces
are obtained by projecting the bridge/soundboard
interaction forces on the instrument body modal basis,
yielding to :

FSB
n (t)=−Fb1(t)φ

SB
n (xb1 ,yb1)−Fb2(t)φ

SB
n (xb2 ,yb2) (7)

where Fb1(t) and Fb2(t) are the vertical forces between
the bridge feet and the soundboard, and φSB

n (xb1 ,yb1)
and φSB

n (xb2 ,yb2) are the modeshapes of the soundboard
at the bridge feet contact locations. Note that the bridge
motion also introduces two horizontal forces Tb1(t) and
Tb2(t) due to friction at the bridge feet (see Figure 1),
but that the friction interaction has no contribution to
the modal forces.

2.3 Interaction forces

2.3.1 String/finger excitation

The string/finger interaction can be modeled very
simply using a spring/dashpot model. The idea is to
attach the finger to the string until the instant of release.
The plucking action of the player during the sticking
phase is therefore expressed in terms of two forces as :

F e
Ys
(t)=−Ke

[
Ys(x

e
s, t)−Y e

s(t)
]
−Ce

[
Ẏs(x

e
s, t)−Ẏ e

s(t)
]

(8a)

F e
Zs
(t)=−Ke

[
Zs(x

e
s, t)−Ze

s(t)
]
−Ce

[
Żs(x

e
s, t)−Że

s(t)
]

(8b)

where F e
Ys
(t) and F e

Zs
(t) are the forces interactions

in the parallel and normal planes with respect
to the soundboard, Ys(x

e
s, t) and Zs(x

e
s, t) are

the string displacements in both directions at the
excitation location xe

s, Ẏs(x
e
s, t) and Żs(x

e
s, t) being the

corresponding velocities, with Ke and Ce the stiffness
and damping coupling coefficients between the finger
and the strings. In the computations, one or several
strings are pulled during 10 ms until reaching an
arbitrary position (yes0 ,z

e
s0) and are then released to

vibrate freely by assuming a null excitation forces for
time t > ts where ts is the time when the strings start
slipping on the finger. As seen, the model just described
does not represent the actual underlying physics of
the finger-string interaction as presented in [13] for
the harp. The modeling of the detailed forces occuring
during the excitation is far less simple but fortunately,
it does not appear necessary to represent these details
accurately in order to obtain a satisfactory simulation
model for the purposes of this paper.

2.3.2 String/fret interaction

In order to control the playing frequency, the
musician presses the strings against the fingerboard
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with its left-hand fingers, which eventually prevents any
string motion at the fret location, and thus shortens
the active length of the vibrating string. As for the
string/finger coupling, the interaction force exerted by
the fret on the string at the fret location xf

s is modelled
by a penalty formulation, using two suitable coupling
constants Kf and Cf and imposing a near-zero string
displacement at xf

s , according to :

F f
Ys
(t) = −KfYs(x

f
s , t)− Cf Ẏs(x

f
s , t) (9a)

F f
Zs
(t) = −KfZs(x

f
s , t)− Cf Żs(x

f
s , t) (9b)

where F f
Ys
(t) and F f

Zs
(t) are the forces interactions

parallel and normal to the soundboard, Ys(x
f
s , t) and

Zs(x
f
s , t) are the string displacements in both directions

at the fret location, and Ẏs(x
f
s , t) and Żs(x

f
s , t) are the

corresponding velocities.

2.3.3 String/bridge interaction

The coupling between the string and the body of the
violin first passes through the string/bridge interaction.
Following Inácio et al. [14], we introduce a penalty model
for this interaction by connecting the string to the bridge
through a very stiff spring (with a damper to minimize
residual local oscillations). Then the forces exerted by
the body on a given string s are given by :

F b
Ys
(t)=−Kb

[
Ys(x

b
s, t)−Y b

s(t)
]
−Cb

[
Ẏs(x

b
s, t)−Ẏ b

s(t)
]

(10a)

F b
Zs
(t)=−Kb

[
Zs(x

b
s, t)−Zb

s(t)
]
−Cb

[
Żs(x

b
s, t)−Żb

s(t)
]
(10b)

where Kb is the (high) stiffness coupling coefficient
between the bridge and the strings, Cb is the damping
coupling coefficient, Ys(x

b
s, t), Zs(x

b
s, t) and Ẏs(x

b
s, t)

and Żs(x
b
s, t) are the string displacements and velocities

at the bridge location xb
s in both directions respectively.

To achieve estimates of the string/bridge interaction,
one must now relate the bridge displacements Y b

s (t),
Zb
s(t) and velocities Ẏ b

s (t), Ż
b
s(t) to the displacements

Zb1(t) and Zb2(t) and respective velocities Żb1(t) and
Żb2(t) of the bridge feet. To that end, we here use simple
kinematical relations instead of considering the bridge
dynamics, and adopt the simplifying assumptions that
the bridge is rigid, massless and contacts the instrument
body at two points. From Figure 1 (lower plot), we
obtain the average vertical displacement Z̄b(t) of the
bridge :

Z̄b(t) =
1

2
[Zb1(t) + Zb2(t)] (11)

and a linear approximation for the bridge angle θb(t)

tan[θb(t)]) � θb(t) � 1

Lb
[Zb1(t)− Zb2(t)] (12)

with Lb = yb2 − yb1 the distance between the bridge
feet centers (left-side values of y are negative). We
will postulate symmetry of the bridge feet, such that
yb1 = −Lb/2 and yb2 = Lb/2. The components of the
displacement of the anchoring point of any given string
s are then given as :{

Y b
s (t) � zsθb(t)

Zb
s(t) � Z̄b(t)− ysθb(t)

(13)

which can be rewritten in a matrix form :

{
Y b
s (t)

Zb
s(t)

}
=

⎛
⎜⎝

zs
Lb

− zs
Lb

1

2
− ys

Lb

1

2
+

ys
Lb

⎞
⎟⎠{

Zb1(t)
Zb2(t)

}
(14)

and similarly for the velocities as,

{
Ẏ b
s (t)

Żb
s(t)

}
=

⎛
⎜⎝

zs
Lb

− zs
Lb

1

2
− ys

Lb

1

2
+

ys
Lb

⎞
⎟⎠{

Żb1(t)

Żb2(t)

}
(15)

where the bridge feet displacements and velocities are
computed from the modal responses of the soundboard :

Zb1(t) =

NSB∑
n=1

q SB
n (t)φSB

n (xB1
,yB1

), (16a)

Zb2(t) =

NSB∑
n=1

q SB
n (t)φSB

n (xB2
,yB2

) (16b)

Żb1(t) =

NSB∑
n=1

q̇ SB
n (t)φSB

n (xB1 ,yB1) (16c)

Żb2(t) =

NSB∑
n=1

q̇ SB
n (t)φSB

n (xB2 ,yB2) (16d)

Interestingly, Equation (13) highlights the coupling
between the string directions through the transverse
motion of the bridge, which is parametrized by the
string anchoring points’ locations (ys,zs). Equation
(13) is consistent with the fact that string vibration
perpendicular to the soundboard excites only symetrical
modes of top plate as one expects. It also expresses that
the rockin action of the bridge induces spontaneous
energy transfer between the body and the string
motions in the two perpendicular polarizations.

2.3.4 Bridge/soundboard interactions

The last element of the formulation is the
computation of the forces Fb1(t) and Fb2(t) at the
bridge feet which excite the soundboard (see Eq.(7)).
These can be obtained from a quasi-static equilibrium
of the bridge, assumed rigid and massless. Figure 1
(upper plot) shows the forces exerted by the bridge on
the strings and on the soundboard. Obviously, the same
forces with opposite sign are exerted by the strings and
soundboard on the bridge. The force balances in the y
and z directions yield respectively to :

Tb1(t) + Tb2(t)−
S∑

s=1

F b
Ys
(t) = 0 (17a)

Fb1(t) + Fb2(t)−
S∑

s=1

F b
Zs
(t) = 0 (17b)

and the nil resulting torque with respect to the
coordinate origin gives :

Fb1(t)
Lb

2
−Fb2(t)

Lb

2
−

S∑
s=1

F b
Ys
(t)zs+

S∑
s=1

F b
Zs
(t)ys= 0 (18)

CFA 2014 Poitiers22-25 Avril 2014, Poitiers

1100



Figure 1 – Simplified diagram of a portuguese guitar
bridge. Upper plot : coordinate system and forces
extered by the bridge on the strings and on the

soundboard. Lower plot : displacements of the bridge
feet and anchoring points of the strings.

Finally, the bridge feet forces are obtained from (17b)
and (18) which results in the following expressions :

Fb1(t) =
1

2

S∑
s=1

F b
Zs
(t)+

1

Lb

[
S∑

s=1

F b
Ys
(t) zs −

S∑
s=1

F b
Zs
(t)ys

]
(19a)

Fb2(t) =
1

2

S∑
s=1

F b
Zs
(t)−

1

Lb

[
S∑

s=1

F b
Ys
(t) zs −

S∑
s=1

F b
Zs
(t)ys

]
(19b)

3 Vibrations of the instrument
body

A Finite-Element (FE) model for the soundboard of
the Portuguese guitar has been carried out using the
finite element package CAST3M [15]. The soundboard
is a thin plate, made of wood, sometimes having a
slighlty curved profile, with a round soundhole. Here,
the FE model considers the soundboard as a thin flat
plate, thus ignoring the influence of arching on the
flexural vibrations of the soundboard, but includes
its bracing as well as the orthotropic nature of the
wood. The different elastic parameters towards the
three principal axes (x is the direction along the

Figure 2 – FEM-computed modeshapes for the four
lowest modes of the soundboard model.

grain) and density were chosen to correspond to
typical values for spruce found in [16]. The mesh
consists of 8043 nodes, for 1122 solid elements. The
model assumed the soundboard clamped on the outer
boundary and eigenvalue computations were performed
over the frequency range of 0-5000Hz. The first four
computed vibrational patterns and corresponding
modal frequencies are presented in Figure 2 where both
symetric and asymetric modes relative to the x -axis
can be seen.

4 Time-domain simulations

4.1 Computational parameters

The simulations were performed for six courses of
double strings as typically found on a Lisbon Portuguese
guitar model. The total length of the strings is 0.615
m, with 0.175m from the tailpiece to the bridge. The
values for their sounding frequencies once streched,
their positions with respect to the origin O (see Figure
1) and corresponding linear density are given in Table
1. The natural frequencies of the string were harmonic
and proportional damping is assumed for both the
strings and the body, separately, with value of 0.01%
and 1% for all modes of each subsystem respectively.
The coupling coefficients used were Kb = Kf = 106

N/m, Ke = 104 N/m, and Cb = Cf = 10 Ns/m with Ce

= 30 Ns/m. After recasting the modal equations into
first-order form, numerical integration was performed
by implementing the analytical integration method
[17], an explicit approach well-suited for such problem,
assuming a constant acceleration within the time-
step. In order to achieve accurate simulations, the
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modal basis for the strings and soundboard cover the
frequency range 0-5000 Hz, and time-domain responses
were sampled using a convenient time step of 5.10−7 s.
At the beginning of the simulations, all displacements
and velocities are null. Numerical simulations presented
here pertain to open strings, with one string being
excited at one-fifth of its acoustical length from the
bridge. A number of 607 modes are used.

4.2 Single string allowing for both
polarisations

To check whether the model for the coupling of
the transverse vibrations of the string is reliable, the
first simulation pertains to the sound produced by
a single string, plucked in the direction normal to
the soundboard. As attested in Figure 3, the string
motion trajectory does not strickly remain in the
vertical plane, therefore highlighting some energy
exchanges between the two perpendicular polarizations
of the string via the bridge action. One significant
consequence of this interaction, also displayed in Figure
3, is the double decay observed for the soundboard
motion, as recorded by a microphone, which indicates
the different coupling strength between the soundboard
and the two perpendicular motions of the string. Also,
as observed for the piano by Weinreich [1], Figure 4
shows that the vertical motion has the faster decay
when considering an oblique excitation, which reveals
its stronger coupling with the normal motion of the
soundboard. Finally, Figure 5 reveals an aspect of
string vibrations for instruments such as the violin and
the guitar which is rarely addressed in the literature.
It is a plot of the standard deviation of the Y and
Z components of the string velocity, along the string
length, which has been discretized in 60 small elements.
Interestingly, it emphasizes some vibratory motion
in the dead part of the string, between tailpiece and
bridge, which surely influences the dynamical response
and the tone of the instrument. Not shown here, other
extensive simulations were performed to assess the well-
behaviour of the synthesis method, by examining the
reciprocal theorem for vibration response or the correct
rockin action of the bridge when a single asymetric
mode is accounted for the soundboard dynamic. In
conclusion, although the coupling between the string
orthogonal motion provided by the present model is
somewhat marginal, the results obtained are consistent
with the expected behaviour.

4.3 Simulation of the fully coupled
model

For illustration, Figure 6 presents two spectrogams
of the soundboard velocity obtained for a vertical
pluck, considering first a single string, and then the
fully 12-string/bridge/body coupled model. Note
the appearance of audible beats in the sound which
shows the sympathetic excitation of slightly mistuned
harmonics of the different string subsystems, due to
their coupling at the bridge.
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Figure 3 – Left : trajectory of the string motion at
the excitation location in the x− y plane. Right : time
evolution of the standard deviation of the soundboard

motion, near the bridge, for a single string.
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Figure 4 – Time evolution of the modal energy of the
subsystems for a single string with oblique excitation

(plucking angle of 45o).

5 Conclusion

The paper presents a modal-based computational
approach for simulating the Portuguese guitar. It
involves the interaction of twelve strings, allows for
both polarizations, and includes the dynamics of the
top plate of a typical Portuguese guitar. The coupling
of all subsystems is ensured through a simple model for
the bridge action, based on geometric rationale. The
present approach focused on the vibrational aspects
of the instrument and still lacks the computation of
the radiated sound, as well as the complex geometry
of the instrument. These aspects will be treated soon
by the authors and other improvement will include the
intrinsic dynamics of the bridge.
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1st pair 2nd pair 3rd pair 4th pair 5th pair 6th pair

fs [Hz] 493.88 440 329.63 493.88 440 293.66
493.88 440 329.63 246.94 220 143.83

ρs [10−4 Kg/m] 3.78 3.94 6.20 3.78 3.94 11.30
3.78 3.94 6.20 14.48 21.22 35.36

(ys,zs) [mm] (-28.6,16.0) (-19.0,16.0) (-9.3,16.0) (0.0,16.0) (9.5,16.0) (19.8,16.0)
(-25.5,16.0) (-15.6,16.0) (-6.2,16.0) (3.1,16.0) (12.8,16.0) (23.3,16.0)

Ns 14 15 21 14/28 15/31 23/47

Tableau 1 – Sounding frequency, linear density, position and size of the modal basis used for the twelve strings.
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45o). The dot stands for the bridge location.
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