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For many years, the boundary elements method has been widely used to bring reference solutions for three
dimensional outdoor propagation problems in homogeneous media. However, the BEM suffers a major drawback
due to dense and unsymmetrical matrices. It may lead to prohibitive computation times, for a large number of
degrees of freedom, making the BEM unusable at high frequencies or for large scale models. During the 80’s,
Greengard and Rokhlin introduced the Fast Multipole Method (FMM) to accelerate the matrix-vector product.
Employed with the BEM, the FMM can reduce the prohibitive computation time through an iterative solver such
as the Generalized Minimal RESidual (GMRES) method. First the theoritical formulation is synthetized. The
scattering problem on a spherical body is then studied for mixed boundary conditions in order to prove the accuracy
and the efficiency of the algorithm. Subsequently, we propose to deal with a half-space propagation problem before
focusing on a more realistic configuration which could be encountered in urban acoustics.

1 Introduction
Based upon the Boundary Integral Equations (BIE)

formulation, the Boundary Elements Method (BEM) [1]
has emerged as a very promising numerical approach
for solving exterior propagation problems. Due to the
need to discretize the boundaries of the studied problem
only, the BEM involves a 2 dimensional mesh for a 3
dimensional propagation problem. In addition, the boundary
elements formalism satisfies the radiation condition at
infinity which is suitable for infinite domain. However
there are some drawbacks with the use of the BEM since
the system of equation is dense, non-symmetrical and often
ill-conditioned. As a result, solving a problem with the BEM
requires O(N2) memory storage and also O(N3) operations,
for N degree of freedoms, when direct solvers are used such
as Gaussian elimination. Thus, dealing with large scale
problems (hundreds of thousands elements) with the BEM
results in a burden regarding the prohibitive computation
times involved.
Since the 80’s, the Fast Multipole Boundary Elements

Method (FMBEM) has been widely studied to efficiently
decrease the prohibitive computation time involved by the
BEM. First reported by Greengard and Rokhlin [2] for
the rapid evaluation of the potential fields governed by
Laplace equation including a large number of particles,
the Fast Multipole Method (FMM) has subsequently been
extended to acoustical problems and Helmholtz equation
[3] and elastodynamics [4, 5]. For a complete overview
of the FMBEM and its application in physics, the reader
can refer to [6]. Employed with an iterative solver such
as the Generalized Minimum RESidual (GMRES) [7],
FMBEM can efficiently reduce the computational cost
to a linear dependence, O(N). Even though common
FMBEM use Wigner-3j symbol, the formalism developed
by Gumerov et Duraiswami, based on the direct Rotation
- Coaxial translation - inverse Rotation decomposition
(RCR-decomposition), uses a set of coefficients which can
be computed recursively [8]. It is this latter formalism which
we have considered in the implementation of our FMBEM
algorithm and which is reported in this paper. Furthermore,
Rokhlin developed a high frequency formulation using a
diagonal translation [9] and fast spherical transforms [10]
to accelerate the translations for high frequencies. This
formulation has subsequently led to a broadband/wide-band
FMBEM algorithm including both low and high frequency
formulations [11], [12].
The purpose of this paper is the application of a

FMBEM algorithm to solve engineering problems of
acoustic propagation in urban environments. First we
present a general overview of the FMBEM formalism and

introduce the mathematical backgrounds related to the BEM
and FMBEM (section 2). Then, we compare the results
obtained with our algorithm with analytical solutions of a
scattering problem by a spherical body in order to prove
its efficiency (section 3.1). Afterwards, we describe how
ground reflections can be accounted for using the image
source principle from a FMBEM point of view (section
3.2). Finally, our algorithm is assessed for a more realistic
problem encountered in urban acoustics (section 4), a
propagation problem in a quarter made of five buildings.

2 General overview andmathematical
backgrounds

2.1 From the wave equation to the boundary
integral equation

For three dimensional propagation in a homogeneous
isotropic domain Ω, the wave equation in the frequency
domain (i.e. the Helmholtz equation), can be written under
the form:

∇2φ(x) + k2φ(x) = 0, ∀x ∈ Ω, (1)

in which φ(x) is the acoustic pressure field at point x, k is
the wavenumber, ∇ is the nabla operator, ∇2() = ∂2()/∂x2 +
∂2()/∂y2+∂2()/∂z2 for cartesian coordinates. Introducing the
Green’s functionG as the free-space fundamental solution of
the previous equation:

G(x, y) =
eikr

4πr
, with r = |x−y| and i2 = −1, (2)

the Helmholtz equation (1) can now be rewritten under its
boundary integral representation:

C(x)φ(x) =
∫
S

[
Gk(x, y)q(y)−

∂Gk(x, y)
∂�ny

φ(y)
]
dS y + φin(x),

(3)
where �ny is the out-coming normal of the propagation
domain Ω at the point y on the boundary S and φ(x), the
incident wave at x from sources. The coefficient C(x) is
related to the fraction of local volume determined by the
solid angle, γ, included in the domain Ω at point x. The
determination of the pressure field on the surface S , φ(x)
requires to describe the Boundary Conditions (BC) on S .
There are two typical types of problem in acoustic wave
analysis referred as Dirichlet’s and Neumann’s problems:

(Dirichlet BC) φ(y) = φ̄(y), ∀y ∈ S ,

(Neumann BC) q(y) =
∂φ

∂�n
= q̄(y), ∀y ∈ S .

(4)
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We can also define a mixed (impedant or Robin’s) conditions
linking both previous quantities with the specific acoustic
impedance Z:

φ(y) = Zq(y), ∀y ∈ S . (5)

Equation (3) is also known as the Conventional Boundary
Integral Equation (CBIE), allowing to determine φ at any
point in Ω, once the values φ and q are known on the
boundary.

2.2 Field representation by the fast multipole
BEM

Since the FMBEM has been extensively covered in
dedicated publications, we do not claim to do here a
thorough description but rather a reminder of the method and
the mathematical backgrounds used for the implementation.
For a complete description of the fast multipole principle, we
recommend to the reader Yijun Liu’s book [6]. Furthermore,
some details related to the RCR-decomposition method and
the numerical aspects of its implementation can be found in
Gumerov and Duraiswami’s work [3].
The main idea of the Fast Multipole Method is the

expansion of the fundamental solution of the Helmholtz
equation on a spherical basis functions. We introduce a
regular basis R and a singular basis S based upon a spherical
harmonics series Ymn of degree n and order m, such as:

Rmn (�r) = jn(kr)Ymn (θ, ϕ), S mn (�r) = hn(kr)Ymn (θ, ϕ),
n = 0, 1, 2, . . . , m = −n, . . . ,+n,

(6)

with the wavenumber k and the spherical coordinates (r, θ, ϕ).
jn and hn denote the spherical Bessel functions and Hankel
functions of the first kind, respectively. The Green’s function
(or the kernel G) in the BIE (3) can now be expanded in the
following form:

G(x, y) = ik
∞∑
n=0

n∑
m=−n

Rmn (x− xc)S mn (xc − yc)R−mn (y− yc). (7)

This expansion is theoretically an infinite sum of spherical
basis functions performed between two points x and y and
two intermediate points, the expansion centers xc and yc
which fulfill the far field conditions:

|x − xc| � |y − xc| and |x − yc| � |y − yc|. (8)

All points located in the area which do not respect this
far field condition belong to the near field area and their
contributions are taken into account using the straightforward
formalism of the BIE. Consistent with the definitions (3) and
(7), the Green’s function derivative (or the kernel F) which
appears in the BIE can also be expanded in 3 dimensions as:

F(x, y) = ik
∞∑
n=0

n∑
m=−n

Rmn (x − x
c)S mn (x

c − yc)
∂R−mn (y − yc)
∂�ny

,

(9)
which fulfill the far field criteria (8). Recurrence relations
can be used for the computation of the basis functions as
well as their derivatives. Precious information about the
computational procedures can be found in the very detailed
publication [8].
These expansions (eq. (7) and eq. (9)) allow the

factorization of the potentials coming from the far field

area leading to an acceleration of the matrix-vector product
which appears in the iterative process of the solver. We can
subsequently set up a hierarchical tree structure in order to
group the potentials around the expansion centers and then
perform the translations between these centers (cf. figure 1).

(a) straightforward method:
number of operations O(N × M).

(b) Multi-Level FMM: number of
operations O(N + M).

Figure 1: Comparison of the number of interactions
between N sources and M receivers for (a) the BEM and (b)
the fast multipole BEM. The lines show the interactions for
each method, the filled circles symbolize the elements and

the circles represent the expansion centers.

2.3 Algorithm features
The FMBEM algorithm has been implemented in a

Fortran 90 code. The purpose is to build a hierarchical tree
consisting of several levels structured from the whole studied
boundary. The computational domain is first embedded in
a cube of vertice D, which is assigned to level 0, thereafter
subdivided in an oct-tree structure from level 0 to level
lmax. Since the FMBEM can handle a very large number
of elements (several hundreds of thousands) on a desktop
computer, the solution on the mesh is approached with
constant elements (interpolation order 0), meaning that
we only have one unknown at the center of each element.
The algorithm includes both low and high frequencies
formulations, according to the definition of Gumerov and
Duraiswami in [12]. In order to translate the expansion
coefficients from an expansion center towards another one,
we use the translation method based on the Direct rotation-
Coaxial translation-Inverse rotation (RCR-decomposition)
introduced in [8] for the low frequency formulation in the
low frequency levels (LF levels) and diagonal translation
introduced by Rokhlin [9] for the high frequency formulation
in the high frequency levels (HF levels). The iterative solver
GMRES [7] is used to solve the matrix system. Therefore,
for each iteration, only the matrix-vector product is stored
and the whole matrix is never explicitly built.

3 Validation of the FMBEMalgorithm
with a scattering sphere problem
The purpose of this section is the validation of our

FMBEM algorithm. We will focus, throughout this
validation stage, on a spherical wave scattered by a spherical
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body (see figure 2), for which an analytical solution exists,
described in the following section. After detailing some
useful parameters of our FMBEM algorithm, the analytical
solution is taken as a reference solution to demonstrate
the accuracy of the FMBEM for both rigid and mixed
boundary conditions (section 3.1). The algorithm will be
used subsequently as a reference to validate the half-space
formalism, starting from its associated full-space problem,
section 3.2

Figure 2: Schematic of the studied problem: A sphere of
radius a excited by a point source.

3.1 Numerical study for a full-space
propagation

Analytical solution We consider the case of a spherical
body of radius a excited by a spherical wave generated by
a point source of amplitude Q located at a distance d = 10a
from the sphere center. The acoustical surface potential φ|S
can be written as:

φ|S = −
Q

4πka2
∞∑
n=0

(2n + 1)hn(kd)Pn(cosθ)
h′n(ka) + σhn(ka)

, (10)

where σ = 1/Z, is the complex admittance and θ, the
azimuthal angle, is the angle between the radius vector of
the surface point and the direction of the incident wave. We
notice that this problem is axi-symmetric (see figure (2))
and is only depending on the variable θ, implying that only
the solution for θ ∈ [0, π] needs to be computed to know the
surface potential on the whole surface. Both equations bring
into play Legendre polynomials Pn(μ) defined in the range
[−1, 1], spherical Hankel functions of the first kind hn (often
noted h(1)n ) and their derivatives h′n. Further information
about the relations between Bessel’s functions can be found
in [13].

Algorithm parameters The validation tests are made
for a sphere of radius a, whose surface is meshed with
31694 constant triangular elements. The maximum number
of elements authorized at the lowest level is 50, which
involves a tree consisting of 6 levels (4 useful levels). The
level-dependent truncation number p, used for the expansion
of kernels, is chosen to keep a very good accuracy. In
order to validate the two formulations, we have performed
several tests with both formulations: pure LF and HF
tests in which only LF formalism or HF formalism are
used. Considering the GMRES solver, we do not use a
preconditioner and the stop criterion (the residual) is set to
1.10−3. Since a small number of iterations is required in
these validation procedures, the memory usage related to
the Krylov subspace is small and we do not have to use the

restart parameters (set to 200). All the computations are
done on a desktop PC with an Intel Xeon R© X5675 processor
at 3.07 GHz and 12 GB storage memory.

Validation cases The analytical solution is taken as the
reference solution for the verification of the FMBEM
algorithm. We study the case of a spherical incident wave
scattered by a spherical body with a radius a equal to 1 m
(see figure 2). We compare the surface potential pressure
level. The source, located at 10a from the sphere center, has
a unit amplitude Q = 1 and the reference pressure chosen is
20μPa. 360 receivers are evenly distributed on the surface
of the sphere. Figure 3 shows the comparisons of the sound
pressure level in decibels, in terms of azimuthal angle in
degrees, between the analytical solution (blue lines) and
the solution computed with the FMBEM algorithm (dashed
red lines). The comparison is performed for dimensionless
wavenumbers: ka = 0.1 and 20, obtained for frequencies
equal to 5.4 and 1082.4 Hz, respectively. In order to ensure
that both kernels G and F are properly computed, we treat
a rigid case (q = 0) for which only the computation of the
kernel F is required, and also an impedant case for which
both kernels G and F are required. The impedance has been
chosen to study the limit cases of a rigid body (i.e. σ = 0),
and a soft body with a normalized complex impedance
(compared with the air) Z/ZA = σA/σ = 1.22 + 1.22i.
We can see a very satisfactory consistency between both

solutions (see figure 3), meaning that the FMBEM algorithm
succeeds in working out the solution for the considered ka.
Hence, the expansion of the kernel G (eq. 7) and its normal
derivative F (eq. 9) on the spherical basis functions are
relevant to keep a satisfactory accuracy.

(a) ka = 0.1 (b) ka = 20

Figure 3: Comparison between the analytical solution (blue
lines) and the FMBEM solution (dashed red lines) of the
sound pressure level in dB(SPL) on the surface of the sphere
excited by a spherical source of unit amplitude Q = 1. The

reference pressure is 20 μPa.

3.2 Numerical study for a half-space
propagation

The full-space acoustic problem studied in the previous
section is actually unusable in urban acoustic. Indeed, due
to the presence of the ground, the problems encountered in
urban acoustic can be seen as semi-infinite problems. Thus
dealing with a half-space problem can be solved either by
meshing the geometry in the mirror domain or by taking into
account the acoustic reflection on the ground thanks to a
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fictitious rigid baffle. We will see in this section how to deal
with a half-space problem in the framework of the FMBEM
starting from its corresponding full-space problem. The half-
space formalism introduced in this section is not an original
work since it has already been the purpose of previous
publications in two dimensions [14] and in three dimensions
[15]. The problem of a whole rigid sphere, studied in the
previous section corresponding to the full-space problem
will be used as the reference solution. We will compare it
to the half-space problem in which only a half-sphere, lying
on a fictitious infinite rigid plane, needs to be meshed. The
contributions of the image domain, which correspond to the
ground reflections, will be added through the fictitious rigid
baffle. The half-space problem is depicted in figure 4 and its
corresponding full-space problem is depicted in figure 2.

Figure 4: Schematic of the validation case: A half sphere of
radius a, excited by a point source .

The half-space principle We present in this section
the method to deal with a half-space problem starting
from its associated full-space problem and we describe its
implementation in the FMBEM algorithm. Since the urban
ground can be considered in a first approach as a rigid plane,
the implementation of the baffle is actually based upon the
image source principle. As for the full-space problem, for
each cell, the oct-tree structure is divided in two areas. The
first area corresponds to the near elements and the second
area corresponds to the far elements.
The contribution of the near elements is performed

directly using the boundary integral equation. For each
contribution from a near source element x, towards a
receiver element y, we add the contribution coming from the
image source element x′ and thus the free space solution G
becomes:

G(x, y) ≡ G(x, x′, y) =
eikr

4πr
+
eikr′

4πr′
, (11)

with r and r′ being the distance from x and x′ to y
respectively.
The contribution of the far elements is performed using

the multipole method. Each time that a translation is made
in the moment step or in the moment to moment (M2M) step
in the real space, from an expansion center to another one, a
symmetric translation is also made in the image domain (see
[14, 15]). This involves two translation matrices, which will
be added at the same expansion center in the moment to local
(M2L) step. Afterwards, there is no distinction between these
two translation matrices and the local to local (L2L) step and
the final summation remain unchanged. The principle of the

contribution of the far elements in the half-space problem,
from a FMBEM point of view, is summarized in figure (5).

Figure 5: General overview of a half-space problem:
definition of the real and virtual objects by the FMBEM.

Finally, for the calculation of acoustic pressure levels
at the receivers away from the boundaries (in the post-
processing step), the contribution coming from the ground
is taken into account through the image source principle
and added to the contribution of elements located in the real
domain.

Numerical results We now compare the solution of
the full-space with its corresponding half-space solution.
For the half-space problem, we only have to mesh a half
sphere involving two times less elements than for the full-
space problem, 15846 (∼31694/2) against 31694 elements
respectively. Solutions are both computed with the FMBEM
algorithm in order to only highlight the differences due to the
rigid baffle. We compare the potential pressure level taken
on 360 receivers, evenly distributed on a circle of radius
r = 5a from the sphere center. The computations are done
for two frequencies, which correspond to the dimensionless
wavenumber ka = 0.1 and 20.0. Note that we have halved the
amplitude of the source for the half-space problem since it is
taken into account twice, once in the real domain and also
for the image domain. Figure 6 shows the potential pressure
in dB taken on the receivers for the full-space problem (blue
line) and for the half-space problem (red crosses).

(a) ka = 0.1 (b) ka = 20

Figure 6: Comparison between the full-space solution (blue
line) and the half-space solution (red crosses) of the sound
pressure level in dB(SPL) on a curved line of radius r = 5a.

The reference pressure is 20 μPa.

Since we cannot see significant differences (maximum
discrepancy of 0.02 dB) between the full-space and the half-
space solutions, the half-space problem with the addition
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of the fictitious infinite rigid baffle is relevant to efficiently
solve acoustic problems including the ground reflections
without having to mesh the mirror object. We also notice
that the half-space problem brings significant savings in
terms of computation time and required memory mainly
due to the fact that the half-space problem requires two
times less number of elements than for its corresponding
full-space problem.

4 Applications of the FMBEM to a
propagation problem in a quarter
Since we have checked in the previous section both

efficiency and accuracy of the half-space FMBEM for a
spherical body, we now focus on a more realistic geometry,
a large scale model in order to emphasize the benefits of the
FMBEM as the number of elements increases.
This larger scale model represents a quarter, made of 5

buildings of 15 meters height and a total length of 110 × 60
meters. We performed the computation for a frequency range
between 90 and 100 Hz with a 1 Hz step, involving 66306
elements at 100 Hz with a space discretization criterion
of λ/4 (λ being the studied wavelength). The maximum
number of elements allowed at the lowest level is 80,
involving 5 useful levels. The mesh as well as the receivers’
map is shown in figure 7. The point source is located at the
coordinates (12, 45, 0). For the sake of the high computation
time involved by classical BEM, the comparison will be
perform with an internal BEM software, Micado3D [16],
which will be taken as a reference. It is an optimized 3
dimensional boundary elements algorithm based on a direct
approach for the study of acoustical problems. It is based
on a variational approach and uses linear interpolation
functions.

Figure 7: overview of the studied geometry: A quarter made
of 5 buildings (66306 elements, in red) excited by a point
source and the receivers’ map (41600 receivers, in green).

Numerical results In figure 8 the sound pressure level in
dB(SPL) calculated on the receivers’ map (total length: 70
m × 130 m, i.e. ∼20λ × ∼40λ) for both Micado3D and the
FMBEM algorithms is displayed. These two maps seem
to be in good agreement. At 100 Hz (for 66306 elements)
the computation required around 8 hours on a Intel Xeon R©
E5645 processor at 2.40 GHz processor with the reference
code Micado3D (optimized variational BEM) and about 20

minutes on an Intel Xeon R© X5675 processor at 3.07 GHz
for the FMBEM implementation. The details of computing
resources required by both algorithms can be found in
table 1.

Figure 8: Sound pressure level in dB(SPL) takes on the
receivers’ map with the Micado3D software (reference) on
the left side and the FMBEM on the right side. The three
receivers’ lines and the two areas are displayed in red

dotted lines.

Thus the FMBEM provides a substantial benefit
regarding the computation time. It is noteworthy that the
iterative solver appears to be the most expensive process
in terms of computation time as well as for the required
memory. We notice that no preconditioning has been
used, thus a suitable preconditioner would reduce both
computation time and storage memory.
In addition to this general insight, we analyze more

precisely the results for two areas belonging to this map. We
performed a logarithmic summation on receivers within the
red dotted square (cf. figure 8) for the area 1 and area 2. The
averaged sound pressure level calculated with Micado3D
and the FMBEM algorithm is 44.3 against 44.9 dB(SPL) in
area 1 respectively. In the area 2, Micado3D calculates 33.2
dB(SPL) with a direct solver, 38.2 with an iterative solver,
against 40.6 dB(SPL) with the FMBEM algorithm (iterative
solver). These results are observed after the stabilization of
the convergence of the iterative solver. It points out the fact
that the computations in area 2 are very sensitive. Indeed,
the pressure values only depend on the scattering field above
the building and neither direct contributions nor reflected are
expected.
We also compare, in figure 9, the sound pressure levels

along the red dotted lines located in the middle of streets (cf.
figure 8). There is a very good agreement on receivers under
the influence of a direct contribution coming from the source
(figure 9(c)) and a acceptable agreement in the shadows areas
(figures 9(a) and 9(b)).
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Table 1: Computing resources related to the main computation stages for both algorithms: Micado3D (BEM variational
approach) and FastBEM (collocation approach).

Direct integrations Translation matrices Solver Total
Method Time(s) Mem(MB) Time(s) Mem(MB) Time(s) Mem(MB) Time(s) Mem(MB)

BEM (variational) ∼ 8000 ∼ 9000 — — ∼ 21400 — ∼ 29400 ∼ 9000
Fast BEM (collocation) 84 510 136 806 1023 5171 1243 6487
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Figure 9: Sound pressure level in dB(SPL) taken along the 3
red dotted lines with the Micado3D software (reference) in

blue lines and the FMBEM in red dotted lines.

5 Conclusion
As a conclusion, it is clear that the fast multipole

method applied with the boundary elements method
provides substantial savings regarding the computational
time involved and storage memory required specifically for
large scale problems, as shown in section (4). However,
an iterative solver such as the GMRES can be a possible
source of error when compared with direct solvers and
must be handle with caution in the more sensitive areas
(shadow areas). Because of the very large cost in terms
of memory for the storage of Krylov subspaces for a large
number of iterations, an appropriate preconditioner seems
to be recommended [17]. It also appears that the recursive
process for the computation of rotation coefficients in the
RCR-decomposition formalism becomes unstable for large
expansion orders and it seems that a stable recursion process
maybe a purpose of investigation.
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