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The Fresnel volume and the Interface Fresnel Zone (IFZ) concepts play an important role in seismic exploration,

as the IFZ largely contributes to the formation of the reflection and transmission wavefields at an observation

point. We derive analytical expressions for the IFZ size for (possibly converted) waves reflected by a curved

interface between dip-constrained transversely isotropic media. The reflectors are of anticline, syncline, or saddle

type, and their principal curvatures axes may not lie in the incidence plane. As in an anisotropic medium the

isochron assumes, in most cases, a non-elliptical shape, the size and the shape of the IFZ for reflected waves are

predominantly dependent on the curvatures of the isochrons together with the curvatures of the interface. The IFZ

shapes also exhibit large variation with interface curvature and incidence angle. In addition, the difference between

the anisotropic Thomsen parameters ε and δ is found to control the size of the IFZ for both P-P and P-S reflections.

Numerical illustrations for P-P reflections show that the IFZ for anisotropic media can be much larger than that

for equivalent isotropic media, more specifically for positive values of ε − δ. The spatial resolution of unmigrated

seismic data in anisotropic media would consequently be different from that determined for the same configuration

if the media were assumed to be isotropic and the interface plane.

1 Introduction
The Interface Fresnel Zone (IFZ) concept plays

an important role in seismic exploration, as the IFZ

largely contributes to the formation of the reflection and

transmission wavefields at an observation point. This finite

area of a reflector can be viewed as the region of constructive

reflection interference surrounding the reflection point

of the geometrical ray. The IFZ determines the spatial

resolving power for unmigrated seismic data with which

important lithological changes along a seismic profile

direction may be observed. Additionnally, it also largely

contributes to the reflected and transmitted wavefields,

and more specifically to their amplitude [12, 5, 6]. As

a consequence, the IFZ has received increasing attention

in past decades, and analytical and numerical modeling

techniques have been used to determine the IFZ dimensions

in various configurations [9, 4, 11, 2, 8, 10, 7]. Most

studies, however, have been concerned with zero-offset

configurations and plane reflectors and few works have

been devoted to anisotropic media and curved reflectors.

Here we present simple analytical expressions for the

IFZ for multi-offset configurations and a curved interface

between dip-constrained transversely isotropic (DTI) media.

We generalize the relationships given in [7] for (possibly

converted) reflected waves from a reflector of anticline-,

syncline-, or saddle-type whose principal curvature axes

may not lie in the incidence plane.

2 Interface Fresnel Zone for reflections
in DTI media

We consider a curved interface between two homogeneous

DTI media. The symmetry axis of each medium being

parallel to the interface normal at each point of the interface,

the DTI media are VTI media with respect to the local

coordinate system at the reflection point. An incident wave

strikes the interface and gives rise to reflected waves and

transmitted waves. The three wave types which may occur

are the SH-wave and the coupled P-SV waves. The x1-axis

lies in the surface tangent plane and in the plane defined

by the surface normal (along the x3-axis) and the slowness

of the incident wave (Figure 1). Because of the symmetry

all seismic signatures depend only on the angle between

the propagation direction and the symmetry axis. The

slownesses of the incident and reflected waves lie then all in

the x1 − x3 plane, i.e. the plane of incidence. This implies

that the out-of-plane components of the group velocity

vector V and slowness vector p are equal to zero in all cases.

From the relation x = d
V V we note that x2 is equal to zero

as well. The superscript S denotes the quantities for the

incident wave, and R for the reflected wave.
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Figure 1: Incident, reflected and transmitted waves at a

curved interface Σ between two anisotropic media

.

The Fresnel volumes (FV) associated with the reflected

or transmitted wave are defined by

∣∣∣∣δT (xS, δx
)
+ δT

(
xU, δx

)∣∣∣∣ ≤ 1

2 f
(U = R, T ) (1)

where f is the dominant frequency of the signal. The

difference in traveltime δT , between a ray from a point x to

the origin O (i.e., T (x, 0)) and from the point x to a point at

δx near the origin O (i.e., T (x, δx)), has to be replaced with

its approximation

δT (x, δx) � 1

2 V d

[
‖δx‖2 −2 x · δx −

(x · δx
d

)2]
(2)

with appropriate superscript, where V = ‖V‖ =(
V2

1 + V2
2 + V2

3

) 1
2

is the group velocity, and d = ‖x‖. In

Eq. 2 we have neglected changes in group velocity (i.e.,
δV
V � 1).

The wave is reflected or transmitted at a curved interface

Σ which may locally be approximated by a second-order

expression

x3 = F (x1 , x2) =
1

2
(x1 , x2) F (x1 , x2)t (3)

where F defines the interface parameters. For the Fresnel

zones at the curved interface we have δx3 = F (δx1 , δx2).
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The IFZ for the reflected wave is defined as the points on

the curved interface Σ which satisfy the inequality

∣∣∣∣δTΣ (xS, δx1, δx2

)
+ δTΣ

(
xR, δx1, δx2

)∣∣∣∣ ≤ 1

2 f
(4)

In Eq. 4 the difference in traveltime δTΣ between the source

(respectively, the receiver) and the reflection point has to be

replaced with its approximation with appropriate superscript

(S or R):

δTΣ (x, δx1, δx2) � 1
2 V d

[(
1 − x2

1

d2

)
δx2

1 + δx
2
2

−2 x1 δx1 − 2 F (δx1 , δx2) x3]
(5)

where d =
[
(x1)2 + (x3)2

] 1
2

and V =
(
V2

1 + V2
3

) 1
2

with [3]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V1 = p1

a11 B2+a44 B1−p2
3

A2

B1+B2

V3 = p3
a44 B2+a33 B1−p2

1
A2

B1+B2

(6)

where, for a given horizontal slowness p1,

p2
3 =

B ∓
[
B2 − 4 a33 a44

(
a11 p2

1 − 1
) (

a44 p2
1 − 1
)]1/2

2 a33 a44

(7)

with B = a33 + a44 +
(
a2

13 + 2 a13 a44 − a11 a33

)
p2

1,

B1 = a11 p2
1 + a44 p2

3 − 1 and B2 = a44 p2
1 + a33 p2

3 − 1, and

where ai j = ci j/ρ are the density-normalized elastic constants

in Voigt notation. In Eq. 7 the minus sign is for the P wave,

and the plus sign is for the SV wave. Remember that x and

V are connected through x = d
V V.

Relations 6 are exact expressions for the group velocity

components. Even if it is preferable to use them in actual

modeling, inversion and processing algorithms, we can use

instead the approximate relations, valid for media with weak

anisotropy, in order to gain valuable analytic insight into the

effects of anisotropy on the IFZ :

{
VP1 = υ

2
P0 p1

[
(1 + 2 ε) − 2 (ε − δ) χ]

VP3 = υ
2
P0 p3

[
1 − 2 (ε − δ) χ′] (8)

{
VS 1 = υ

2
S 0 p1

[
1 + 2σ χ

]
VS 3 = υ

2
S 0 p3

[
1 + 2σ χ′

] (9)

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χ =

p4
3

(p2
3
+ξ p2

1)
2

χ′ = ξ p4
1

(p2
3
+ξ p2

1)
2

(10)

and

σ =
υ2

P0

υ2
S 0

(ε − δ) (11)

ξ = 1 + 2 ε
υ2

P0

υ2
P0
− υ2

S 0

(12)

where the notation of [14] is used

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υP0 =
(

c33

ρ

)1/2
υS 0 =

(
c44

ρ

)1/2
ε = c11−c33

2 c33

δ = (c13+c44)2−(c33−c44)2

2 c33 (c33−c44)

(13)

υP0 and υS 0 are the vertical velocities defined from the

medium density ρ and the elastic constants ci j given in Voigt

notation.

From Eqs 5, 8 and 9 we note that besides the interface

parameters F and the vertical velocities υP0 and υS 0, the

difference ε − δ also controls the shape and the size of the

IFZ for both P-P and P-SV reflections.

3 Numerical examples
Here the shape and the size of the IFZ for P-P reflections

are investigated for various anisotropic parameters, incidence

angles, and interface curvatures. The purpose is to

demonstrate how all these parameters, and specifically the

anisotropic parameters, may control the IFZ size and hence

the lateral seismic resolution. In order to emphasize this

influence, we compare the results with those obtained for the

equivalent isotropic media and plane reflectors.

3.1 Description of the model
We use the measured values of anisotropic parameters

in brine-saturated shales [16]. The incidence medium

has density ρ = 2 597 kg/m3, vertical P-wave velocity

υP0 = 4 409 m/s, vertical S-wave velocity υS 0 = 2 688 m/s,

and dimensionless anisotropic (Thomsen) parameters

ε = 0.110 and δ = −0.043. Velocities and Thomsen

parameters are connected to elastic coefficients ai j = ci j/ρ
[15]. Hereafter we will consider more specifically the

difference ε − δ which is known to primarily govern P-wave

signatures [15] and which seems to also control the IFZ size

for both P-P and P-SV reflections. The difference ε − δ has

a positive value (ε − δ = 0.153) for real brine-saturated

shales. For comparison purpose, and in order to emphasize

the influence of this difference on the shape and the size of

the IFZ, we fix the values for ρ, υP0, and υS 0, and we also

consider a negative value for ε − δ (−0.153). The source

and the receiver are located at a distance x3 = 3000 m
from the plane tangent to the interface at the reflection

point. The prevailing frequency f of the incident P-wave is

chosen equal to 25 Hz. The incident P-wavelength at normal

incidence is then 176 m.

We consider three kinds of curved reflector in this

study: an anticline-type reflector with positive values for

the main radii of interface curvature (R1 = + 5 000 m and

R2 = + 4 000 m), a syncline-type reflector with negative

values for radii (R1 = − 5 000 m and R2 = − 4 000 m),

and a saddle-type reflector with R1 = − 5 000 m and

R2 = + 4 000 m. To remain general we cannot suppose that

δx1 and δx2 lie along the principal curvature axes of the

interface, as the x1-direction is given by the incoming ray,

which implies that the functions Fi j (i, j = 1, 2) in Eq. 3 can

be expressed as [13]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F11 =

1
R1

cos2φ + 1
R2

sin2φ

F12 =
(

1
R1
− 1

R2

)
cosφ sinφ

F22 =
1

R1
sin2φ + 1

R2
cos2φ

(14)

where φ is the angle between the principal curvature axes of

the interface and the Cartesian coordinate axes. Hereafter we

will consider φ = 20◦. We also consider the particular case

where δx1 and δx2 both lie along the principal curvature axes

of the interface, which implies φ = 0, and hence

CFA 2014 Poitiers 22-25 Avril 2014, Poitiers

269



⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F11 =

1
R1

F12 = 0

F22 =
1

R2

(15)

Note that for a plane reflector the radii R1 and R2 have infinite

values.

3.2 Influence of ε − δ on the IFZ for P-P
reflection from various curved reflectors

We study the effects of the difference ε − δ on the shape

and the size of the IFZ for P-P reflection for various incidence

angles and various interface curvatures.

Figure 2 illustrates the results for a plane reflector.

For comparison purposes we also show the IFZs for the

equivalent isotropic medium (ε = δ = 0). The size of each

IFZ is normalized with respect to the incident P-wavelength

for θ = 0. For θ = 0 the anisotropic IFZ is equivalent to

the isotropic counterpart and exhibits circular shape. This

striking result seems to be conflicting with that presented in

[11]. In fact, our zero-offset results for anisotropic media

are due to the traveltime approximation which consists in an

expansion in a Taylor series around the central ray. Since

the reflector dip is zero, the zero-offset rays depend only on

the vertical velocity of the medium, and the results are the

same as for isotropic media. Nevertheless, with increasing θ
the anisotropic IFZ shows significant changes in shape with

respect to the isotropic counterpart. These changes are much

more pronounced for positive values of ε − δ.
Figures 3, 4 and 5 present the variation in shape and

size of the IFZ at an anticline-, syncline-, and saddle-type

reflector, respectively, as a function of ε − δ and for various

incidence angles θ. The principal curvature axes of the

reflectors lie along the Cartesian coordinate axes.

As expected in the case of an anticline, since a smaller

area of the interface is in contact with the isochron, the

anisotropic IFZ is smaller than that at the plane reflector.

Whatever the value for ε − δ and for small (or moderate)

incidence angles, the size and the shape of the anisotropic

IFZ are quite identical to the isotropic counterparts (Figure

3).

On the contrary, the anisotropic IFZ at the syncline-type

reflector exhibits a more complex shape with increasing

θ (Figure 4). For small incidence angles the IFZ has an

elliptical shape with the major axis lying in the transverse

plane, whatever the value for ε − δ. As the angle θ increases

the curvature of the isochron tends to that of the reflector

over a very large distance, which leads to growing portions

of the reflectors involved in the reflection process, and hence

an unusually large IFZ in the incidence plane (e.g., for

θ = 35◦ in Figure 4). Whatever the value for ε − δ, the

size of the anisotropic IFZ at a syncline is larger than the

isotropic counterpart. Nevertheless, this feature is still more

pronounced for positive values of ε − δ. Note that for wider

incidence angles the anisotropic IFZ exhibits four infinitely

extended tails along diagonal directions, known as indicators

of the existence of stationary points of hyperbolic type

[1, 12]. Nevertheless, these tails are devoid of physical sense

and must be truncated to obtain the actual field-formation

region which is of finite size [1]. The real size of the

anisotropic IFZ is then given by the ellipse tangent to the

vertices of hyperbolae and whose axes lie in the incidence

and transverse planes.
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Figure 2: Variation in shape and size of the IFZ for P-P

reflection from a plane reflector between anisotropic (solid

line) and isotropic (dashed line) media, as a function of the

difference ε − δ (with positive (top) or negative (bottom)

value) and for various incidence angles θ. The incidence

angles are θ = 0 (dark blue), θ = 20◦ (green), θ = 30◦ (red),

and θ = 50◦ (light blue).

The anisotropic IFZ at the saddle-type reflector exhibits

a specific shape which is a mix between the shapes of the

anisotropic IFZ at the anticline and at the syncline (Figure 5).

As expected from the values of the main radii of the interface

curvature, its size is limited in the incidence (respectively,

transverse) plane by the extent of the anisotropic IFZ at the

syncline (respectively, anticline). The anisotropic IFZ at the

saddle-type reflector is larger than the isotropic counterpart,

this feature still being more pronounced for positive values

of ε − δ.
Considering the general case where the principal

curvature axes of the reflectors do not lie along the Cartesian

coordinate axes leads to no minor changes in the shape

and the size of the IFZ for anticline-type reflector (Figure

6). The changes however are significant for syncline- and

saddle-type reflectors (Figures 7 and 8). The IFZ patterns

still remain ellipses expanding from the fixed reflection

point with increasing incidence angle, but they are now

rotated by the angle φ = 20◦ with respect to the x1-axis.

In addition to the rotation of the patterns, the rotation of

the principal curvature axes of the reflectors leads to larger

(respectively, smaller) size of the isotropic and anisotropic

IFZs at the syncline (respectively, saddle-type reflector)

along the direction of the principal curvature axis associated

with radius R1, the size along the perpendicular direction

remaining inchanged. Moreover, the occurrence of the

infinitely extended tails along diagonal directions can be

noted at the syncline for smaller incidence angles than

CFA 2014 Poitiers22-25 Avril 2014, Poitiers

270



Figure 3: Variation in shape and size of the IFZ for P-P

reflection in anisotropic (solid line) and isotropic (dashed

line) media at an anticline-type reflector, as a function of the

difference ε − δ with positive (top) and negative (bottom)

value and for various incidence angles θ. The incidence

angles are θ = 0 (dark blue), θ = 20◦ (green), and θ = 35◦
(red). The principal curvature axes of the reflectors lie along

the Cartesian coordinate axes.

Figure 4: Same as in Figure 3, but for a syncline-type

reflector.

Figure 5: Same as in Figure 3, but for a saddle-type reflector.

previously. Finally, the anisotropic IFZs are larger than

the isotropic counterparts, this feature still being more

pronounced for positive values of ε − δ.

Figure 6: Same as in Figure 3, except that the principal

curvature axes of the reflectors do not lie along the

Cartesian coordinate axes (rotation by φ = 20◦ with respect

to the x1-axis).
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Figure 7: Same as in Figure 4, except that the principal

curvature axes of the reflectors do not lie along the

Cartesian coordinate axes (rotation by φ = 20◦ with respect

to the x1-axis).

4 Conclusions
The interface Fresnel zone (IFZ) largely contributes to

the formation of the reflection and transmission wavefields

at an observation point. We have derived analytical

expressions, based on approximations of traveltimes, to

evaluate its size for converted and non-converted waves

reflected or transmitted by a curved reflector between two

di-constrained transversely isotropic (DTI) media. Our work

thus extends previous studies to the case of oblique wave

incidence onto a curved interface of anticline, syncline, and

saddle type (with principal curvatures axes not necessarily

lying along the Cartesian coordinate axes). We have

investigated the shape and size of the IFZ for P-P reflections

as a function of anisotropy parameters for various incidence

angles and interface curvatures. As in an anisotropic

medium the isochron assumes in most cases a non-elliptical

shape, the size and shape of the IFZ for reflected waves are

known to be predominantly dependent on the curvatures of

the isochrons together with the curvatures of the reflector.

As expected, the syncline- and the saddle-type reflectors

have exhibited very large IFZs compared to those for plane

or anticline-type reflectors. In addition, the difference

between the anisotropic Thomsen parameters ε and δ has

been found to also control the shape and size of the IFZ

for P-P reflections. The effects are much more pronounced

for positive values of the difference ε − δ. The spatial

resolution of unmigrated seismic data in anisotropic media

will consequently be different from that determined for the

same configuration if the media are assumed to be isotropic

and/or the reflector plane.

Figure 8: Same as in Figure 5, except that the principal

curvature axes of the reflectors do not lie along the

Cartesian coordinate axes (rotation by φ = 20◦ with respect

to the x1-axis).
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