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Accurate simulation of seismic wave propagation in complex geological structures is widely used for

environmental and industrial applications for subsurface structure evaluation and in seismic exploration as a core

tool of seismic imaging and inversion methods. However, conventional methods fail to simulate realistic wavefields

in geological media with large and rapid structural changes, due to the presence of shadow zones, diffractions

and/or edge effects. Different methods have been developed to improve seismic modeling in complex geological

environment. They are typically tested either on synthetic configurations against ”validated” methods, or via direct

comparison with real data acquired in situ. Such approaches have limitations, especially if the propagation occurs

in a complex environment with strong-contrast reflectors and surface irregularities. An alternative approach for

seismics consists in comparing the synthetic data with data obtained in laboratory under controlled conditions for

a known configuration. We present here a comparison of laboratory data of 2D and 3D zero-offset wave reflection

from a strong topographic environment immersed in a water tank with synthetic data computed by means of a

Spectral-Element Method and the Tip-Wave Superposition Method. The results indicate a good fit in time arrivals

and amplitudes.

1 Introduction
Accurate simulation of seismic wave propagation

in complex geological structures is widely used for

environmental and industrial applications for subsurface

structure evaluation and in seismic exploration as a core tool

of seismic imaging and inversion methods. In models with

simple structures and slowly varying material properties,

conventional methods (e.g., ray methods, finite-difference

methods) are efficient tools. However, difficulties arise for

complex geological structures with large and rapid structural

changes, and conventional methods fail to simulate realistic

wavefields, due essentially to the presence of shadow zones,

diffractions, and edge effects. Different methods have thus

been developed to improve seismic modeling in complex

geological environments with structural complexities like

faults with steep dips or curved reflectors. They are typically

tested on synthetic configurations against analytical solutions

for simple canonical problems or reference methods, and

several projects focusing on verification and validation of

numerical methods have been conducted in the last few

years [11]. Such an approach has limitations, especially

if the propagation occurs in a complex environment with

strong-contrast reflectors and surface irregularities, as

it can be difficult to determine the method which gives

the best approximation of the “real” solution given by a

reference method. Another approach is to validate these

methods via direct comparison with real data acquired in
situ [9]. Unfortunately, without a priori (good) knowledge

of the geological environment, the interpretation of the

obtained results may be a tedious task due to the existence

of diffraction and sideswipe events.

An alternative approach for seismics consists in

comparing the synthetic data with data obtained in the

laboratory. In contrast with in situ experiments, high-

quality data are collected under controlled conditions for

a known configuration, which is crucial for comparisons

with numerical models. Moreover, unlike synthetic data,

laboratory data possess many of the characteristics of field

data (random and signal-generated noise, multiples, mode

conversions), as real waves propagate through models with

no numerical approximations. Our aim is to study 3D

complications in zero-offset reflection profiles acquired over

a strong topographic environment in order to improve the

understanding of the physical mechanisms involved in the

interaction of the waves with irregular surfaces. As noted

previously, in such a complex environment the numerical

methods based on approximations may fail to simulate

accurately the seismic wavefields and produce different

results depending on their intrinsic hypotheses. The main

purpose of this work is therefore to test the approach using

laboratory data as reference data for benchmarking 2D and

3D numerical methods and techniques. Using the indoor

tank facilities of the Laboratory of Mechanics and Acoustics

(LMA, Marseille, France) we have performed laboratory-

scaled measurements of zero-offset reflection of broadband

pulses on a model containing topographic structures with

several edges and corners and immersed in a water tank.

The presence of these structures is expected to complicate

the wavefields significantly. In what follows we present

comparisons of these measurements with numerical data

simulated by means of a Spectral-Element Method (SEM)

and a Discretized Kirchhoff Integral Method (DKIM).

2 Methods

2.1 Experimental method
We carried out laboratory experiments at Laboratory of

Mechanics and Acoustics in Marseille, France. The model

used in these experiments, called the ”Marseille model”, is

partly based on French model [7], but contains additional

topographies such as a truncated dome and a truncated

pyramid (Fig. 1(a)). The model of size 600 x 400 x 70 mm3

is made of PVC material which is isotropic at ultrasonic

frequencies, and whose measured properties are in the same

range as those of typical geological media. The thickness of

the model varies from 30 to 70 mm, the difference between

two levels, separated by a planar fault, being 40 mm. The

model was immersed in a water tank which is equipped with

a computer-controlled system which allows for accurate

positioning of the source and receiver. The measured

properties of the materials are VP = 1476 − 1493 m/s

(depending on the water temperature), ρ = 1000 kg/m3

in the water layer, and VP = 2220 m/s, VS = 1050 m/s,

ρ = 1412 kg/m3 in the PVC material. Attenuation in the

PVC layer is described by quality factors 40 < QP < 60

and 27 < QS < 31 for P and S-waves, respectively.

Attenuation in the water is negligible. As zero-offset seismic

configuration is considered for these experiments, the

model is illuminated by a piezoelectric transducer which

operates both as a source and a receiver. Different kinds of

transducers with a central frequency fc equal to 500 kHz

are used: one transducer with diameter D = 25.4 mm and

narrow-beam (NB) aperture (about 8◦ at −3 dB), and one

transducer with diameter D = 3 mm and broad-beam (BB)
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aperture (about 45◦ at −3 dB), which allows us to obtain 3D

zero-offset data.

Conventional ultrasonic pulse-echo technique wass

used to obtain the reflection data from the Marseille

model. The distance from the transducer to the flat part

of the model surface is either 105 mm ± 1 mm, or

150 mm ± 1 mm, the far-field condition being thus fulfilled

for any position of the transducer. Wave propagation is

performed in small-scale conditions, i.e., for instance, if a

scale ratio of 2.104 is considered an experimental frequency

of 500 kHz corresponds to a real frequency of 25 Hz,

and an experimental distance of 10 mm corresponds to a

real distance of 200 m, velocities as well as densities and

attenuations remaining unchanged.

We performed acquisitions along Y-lines with a spatial

sampling �y equal to 2 mm (Fig. 1(b)). The collected

data thus consist of numerous parallel profiles composed

of a collection of reflection data for dense grids of source-

receiver locations. We process reflection data to produce

seismograms corresponding to different cross-sections of

the model. We pay more attention to specific profiles

because they present a high interest as they cross the main

structures of the model. The data collected along these

profiles might thus contain reflections and diffractions

from all the structures. These profiles are represented

by heavy-dashed lines in Fig. 1. The seismograms are

obtained after application of a low-pass filter to raw data,

in order to eliminate the harmonic resonances of the

transducers. Additionally, for visualization purposes, we

apply a clipping procedure with different clipping numbers x
to all seismograms presented below, i.e., saturation of all the

signals whose amplitudes are greater than x of the maximum

amplitude, in order to enlighten weaker signals.

Fig. 2 shows seismograms corresponding to the

acquisition line Y150 obtained with the NB and the BB

transducers, respectively. Events with a time arrival smaller

than 210 μs correspond to primary reflections from the top

surface of the Marseille model, whereas events with greater

time arrival correspond to either multiples, or reflections

from the bottom surface. Noticeable discrepancies between

data obtained with the two kinds of transducers can be

identified in Fig. 2. More specifically, diffractions at the

edges of the topographic structures can be clearly observed

only on data obtained with the BB transducer. The steep

slope of the fault however remains invisible whatever the

transducer used. Additional experimental results obtained

with both kinds of transducers can be found in [3, 5].

2.2 Numerical methods
We used two kinds of numerical methods for synthetic

modeling of the zero-offset experiments : a Spectral-Element

Method (SEM) and a Discretized Kirchhoff Integral Method

(DKIM).

The SEM is based upon a high-order piecewise

polynomial approximation of the weak formulation

of the wave equation. It combines the accuracy of

the pseudospectral method with the flexibility of the

finite-element method [14]. In this method, the wave

field is represented in terms of high-degree Lagrange

interpolants, and integrals are computed based upon

Gauss-Lobatto-Legendre quadrature. This combination

leading to a perfectly diagonal mass matrix leads in turn

Line Y 150 

Line Y 200 

(a)

(b)

Figure 1: The Marseille model and specific acquisition lines

(a), and the acquisition design (b).

to a fully explicit time scheme which lends itself very

well to numerical simulations on parallel computers. It is

particularly well suited to handling complex geometries and

interface matching conditions [4]. The typical element size

that is required to generate an accurate mesh is of the order

of λ, λ being the smallest wavelength of waves traveling in

the model. Very distorted mesh elements can be accurately

handled. The SEM may be computationally expensive

depending on the size of the domain, especially for 3D

domains and high-frequency simulations. We thus mesh

the model in 2D with quadrangles using the open-source

software package Gmsh [8]. We implement directional

directivity of standard ultrasonic transducers using a set

of equidistant omnidirectional sources (like a horizontal

array) whose amplitude is weighted by a Hamming window.

The radiation of the simulated source is directed along the

vertical. It is obtained using 51 point sources distributed

over a line length of 2.54 cm, which corresponds to the

diameter of the NB transducer.

The DKIM is a method based on numerical evaluation

of the Kirchhoff-Helmholtz surface integral, which is a

powerful tool to model the scattered wavefield from a

piecewise smooth interface [15]. Both the field and its

normal derivative at the interface, appearing in the integral,

are commonly computed using the Kirchhoff approximation,
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Line Y150 – water depth 150 cm – Broad-beam transducer (500 kHz) 
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Figure 2: Laboratory zero-offset data (seismograms)

obtained with the narrow-beam transducer (a), and the

broad-beam transducer (b). The transducer is located at

150 mm above the Marseille model. Clipping with x = 15 in

(a) and x = 40 in (b) was applied.

i.e., by multiplication of the incident wavefield and its

normal derivative with the plane-wave reflection coefficient.

The discretization is performed exploiting the formulas

given in [1]. The detailed physical explanation of the

method based on Huygens’ principle is presented in [2].

Details on implementation of the method, together with the

computing resources needed for simulations, can be found

in [12, 13].

3 Comparison of numerical simulations
with experimental data

Fig. 3 focuses on the modeling using the SEM of

the wave reflection from, and transmission through, the

small dome of the Marseille model illuminated by the NB

transducer. Fig. 3 focuses also on the diffraction effects

induced by the truncated part of the dome (Line Y150).

We can notice the cuspidal form of the interaction between

the wave reflections from the (flat and curved) part of the

Marseille model and the wave diffractions by the truncated

part or the edge of the dome. The result of the modeling

of the primary reflection from the top of the PVC material

along Line Y150 is shown in Fig. 4, which provides detailed

comparison of two traces corresponding to two different

positions of the source above the truncated dome (i.e., just

above the top of the dome and just above the truncated

part of the dome). All datasets, including that illustrated

in Fig. 4, are normalized by dividing the signal amplitude

by the maximum amplitude of the whole dataset acquired

for the same transducer, and we apply a static time-shift to

all datasets. Visual observation of the traces shows a good

fit in terms of arrival times and an acceptable fit in shape

and amplitude between 2D modeled and laboratory data.

Nevertheless, as the simulations using the SEM are only 2D,

the influence of the 3D diffraction effect produced by the

truncated part of the small dome is largely overestimated.

(a)

(b)

Figure 3: Numerical simulations of the wave reflections,

transmissions, and diffractions in the vicinity of the

truncated dome using the 2D SEM.

In Fig. 5 we show the results of modeling of the primary

reflection from the top of the PVC material using the DKIM,

and more specifically the single-scattering seismograms

for synthetic data along Line Y200, together with the total

seismograms from laboratory data obtained with the BB

transducer. Direct observation of the laboratory and single-

scattering seismograms shows a good fit in the modeling

of reflection and diffraction events. Note that for the case

of the NB transducer, its focused beam cannot illuminate

the out-of-plane structures which therefore are not observed

on laboratory data. On the contrary, for the case of the

BB transducer, diffractions at the edges of the topographic

structures and reflections from the out-of-plane structures

and the fault can be clearly observed in the synthetic

data, in accordance with the experimental data, even if the

acquisition line does not cross the top of the structures.

Though the data are zero-offset, they exhibit interesting

3D effects. Nevertheless, the steep slopes of the truncated

pyramid remain invisible.

In Fig. 6 we provide a more detailed qualitative

comparison of the laboratory and synthetic traces,

corresponding to three chosen source positions in Fig. 5.

The top trace corresponds to the reflection from the slope

of the out-of-plane full dome, the flat part of the model and

the slope of the out-of-plane truncated dome. The middle
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Figure 4: Comparison of the synthetic traces (blue line)

obtained with 2D simulations using the SEM and laboratory

traces (green line) along Line Y150, corresponding to wave

reflection (a) from the top of the dome, (b) from the

truncated part of the dome.

one corresponds to the reflections from the slope of the

out-of-plane full dome and truncated dome, the flat part of

the model and diffraction effects produced by the truncated

part of the dome. The bottom one corresponds to diffraction

effects produced by the fault, the reflection from the flat

part of the model and diffraction effects produced by tips

of the truncated pyramid. One can note a good fit of the

traces in terms of the shape and the phase of the signal, but

discrepancies in terms of amplitude, since the traces contain

diffractions and reflections from the out-of-plane structures.

We provide a more quantitative analysis by performing

a numerical comparison of these three traces selected. We

use several error norms for quantitative analysis of the

misfit between the synthetic and laboratory data, namely the

single-valued normalized cross-correlation coefficient [16],

the cross-correlation coefficient together with the root mean

square (rms) misfit [6], and misfit criteria EM and PM based

on the time-frequency representation using the continuous

wavelet transform [10]. The single-valued normalized

cross-correlation coefficient cc estimates the degree to which

two signals are correlated in terms of phase and satisfies

−1 ≤ cc ≤ 1. The equality cc = 1 is for perfect correlation,

cc = 0 for uncorrelated series, and cc = −1 for negative

correlation.

We provide that comparison of the misfits between the

three selected laboratory and numerical traces obtained with

the BB transducer in Fig. 7. The qualitative results shown

above are confirmed quantitatively by the high values of the

normalized cross-correlation coefficient and the low values

of PM on the one hand, indicating that the phase fit is good,

and by relatively high values of the rms misfit and EM on

the other hand. However, the results indicate that there are

phase shifts though the amplitude fit is good. The time shifts

observed for the reflections from the slope of the fault are

due to a possibly wrong tilt used for modeling.
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(a) Total seismogram obtained in the laboratory.
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(b) Seismogram obtained with the TWSM.

Figure 5: Seismograms obtained along Line Y200.

4 Conclusion
We have tested an alternative approach for benchmarking

numerical methods for 2D and 3D wave propagation. This

approach consists in comparing synthetic data obtained

using numerical modeling to laboratory data obtained for

a known configuration. We have obtained the laboratory

data by laboratory scale measurements of zero-offset

reflection of broadband pulses, generated by narrow-beam

and broad-beam sources, from a scaled representation of a

geological model with strong 3D topographies immersed in

water. The diffraction effects produced on the wavefields

by the complicated features of the model, together with the

existence of shadow zones, make the laboratory experiments

under controlled conditions of interest. We have computed

synthetic data by means of a spectral-element method and

a discretized Kirchhoff integral method. The comparisons

between synthetic and laboratory data exhibit a good
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Figure 6: Comparison between laboratory (red) and

numerical (blue) traces obtained with the broad-beam

transducer along Line Y200 (cf. Fig. 5).
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Figure 7: Comparison of the misfits between laboratory and

numerical traces obtained with the broad-beam transducer

along Line Y200, and corresponding to the three traces in

Fig. 6.

qualitative and quantitative fit in terms of time arrivals

and acceptable fit in amplitudes for both narrow-beam

and broad-beam datasets. Nevertheless they also reveal

the necessity to switch to 3D in future work and use our

numerical tools to model 3D zero-offset wave reflection

from strong topographic structures and to better describe

the reflection phenomena with more complex reflection

coefficients.

The data sets obtained during this measurement

campaign seem promising for future use as a real-data

benchmark for 2D and 3D model comparisons. The

next step will consist in a multi-offset experiment with

broad-beam transducer. In future work we plan to perform

numerical cross-validation of 2D and 3D numerical methods

and techniques on the obtained data in order to analyze

the respective limitations of each method and to choose

the right strategy for further development of the methods.

This is the final goal of our project called BENCHIE

(http://www.benchie.cnrs-mrs.fr/).
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