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Sound propagation in dilute suspensions is studied using two models, one based on the coupled phase equations
which is a hydrodynamic model and the other based on the multiple scattering theory which is an acoustic model.
Suspensions contain rigid or solid elastic particles which can be fixed or moving. A Rayleigh-Plesset like equation
is obtained in order to take into account dilatational effects of elastic solid particles when using the hydrodynamic
model. Analytical calculations performed for long wavelenght, low dilution and small weak bulk absorption in
the ambient fluid show that both models are stricteley equivalent. It is shown that the Faxén forces introduced in
the hydrodynamic model are implicitly taken into account in the acoustic model for fixed rigid and elastic solid
particles while they are not for moving rigid particles. In this last case, the calculation of the acoustic scattering by
a single particle has to be modified.

1 Introduction
The propagation of sound waves through dilute

suspensions of different natures has been the subject of a
large number of studies for many years since the pioneering
article of Sewell [1] who considered immovable rigid
particles suspended in a viscous atmosphere. In this context,
two methods have been principally developed to study
the influence of particles on the sound propagation in
suspensions. First, the ECAH theory for which the wave
number describing the sound propagation in suspensions
is straightforwardly obtained from the multiple scattering
theory based on the Foldy approximation [2]. The primary
advantage of the ECAH theory is to be valid over the
whole frequency range whatever the nature of the spherical
particle, rigid, fluid or elastic. The second modelling is the
coupled phase theory based on the two-phase hydrodynamic
equations [3, 4] which gives a good framework to incorporate
phenomena that would be difficult to include in the scattering
theory such as non linear effects, mass transfers or chemical
reactions. Moreover, after linearization, it also leads to
an explicit dispersion equation that is generally simpler
to calculate, which can be useful when dealing with the
inverse problem. However, this theory is limited to the long
wavelength regime and more complicated to applied to
compressible particles other than bubbles for which many
studies have been done [5].

The comparison of both models has already been widely
discussed in the review of Challis et al [2]. However, most of
the comparisons made in the literature are based on results of
numerical calculations [3, 4] and it appears of fundamental
interest to compare analytical calculations obtained by both
models in order to make easier the physical interpretations.
Of course, some assumptions are required to carry out
analytical calculations. They are performed for spheres
immersed in a viscous fluid in which thermal effects are
neglected. The wavelength is assumed to be large compared
to the size of particles and suspensions are supposed to be
diluted enough.

A key point was to modify the equations of hydrodynamic
models to take into account the compressibility of elastic
solid spheres. Compared to Evans & Attenborough [4],
we do not take into account thermal effects, but as for
bubbles [5] we introduce a term of compressibility into the
conservation of mass. This requires to find a relationship
between the dynamic radius of elastic sheres and the
acoustic pressure. To this end, we have established a new
Rayleigh-Plesset-like equation under the hypothesis of
long wavelength. The system of hydrodynamic equations is
finally closed with the use of Faxén forces for rigid particles
that involve Stokes viscous drag force, Basset-Boussinesq
history force, added mass effect and Archimede force. As we

do not exacly know Faxén forces for elastic solid particles
we used those corresponding to rigid particles. We think that
it is a realistic assumption when the compressibility of solid
particles is not too high, which is confirmed later by our
study.

In the long wavelength regime, it is well established
that the propagation is governed by the two first modes of
vibration of the particles. If AL

n represent the amplitude of
the compression wave field diffracted by a single particle,
where n denotes the mode of vibration, AL

0 incorporates the
effects of different compressibilities of the materials of the
two phases (the particles and the surrounding viscous fluid).
The mode n = 0 corresponds to a scattered radiation in a
monopole form. The coefficient AL

1 represents viscous loss
owing to the to-fro motion of the particle with respect to
the surrounding fuid as well as scattered radiation in dipole
form. In the long wavelength limit and when the density
contrast between the phases is low, the solution tends to be
dominated by AL

0 . When the density contrast increases, the
AL

1 term tends to dominate and AL
0 can be neglected in many

cases, and then the solution is essentially the hydrodynamic
case. The goal of the paper is to analyze these behaviors from
the analytical results which are obtained. For this, we have to
consider two cases, heavy rigid particles (with infinite mass)
which are fixed in space and free rigid particles (with a finite
mass) which can move. These two cases are easily taken
into account in the coupled phase theories by cancelling or
not the velocity of particles in the Faxén forces. It is more
complicated for the multiple scattering theory because Faxén
forces never appear explicitly in this approach. However,
the ECAH theory can be modified for rigid particles. We
have just to replace the usual AL

n coefficients associated to
heavy rigid particles by those associated to moving rigid
particles calculated by Temkin and Leung [6]. In this case
we speak of modified ECAH theory. The elastic case is
different. Surprisingly, we will see that there is no need to
change the usual AL

n coefficients calculated for elastic solid
particles fixed in space. This suggests, at least in the long
wavelengh regime, that Faxén forces and the moving of
particles are implicitly taken into account in the multiple
scattering theory when dealing with elastic solid particles.

2 Hydrodynamic model
As the hydrodynamic model is principally the one

developed by Coulouvrat et al [7], we only give an outline
of the general theory in the first subsection. The goal is
to calculate the effective wave number kH describing the
sound propagation in suspensions. A Rayleigh-Plesset like
equation is established in the second subsection in order to
close the system of equations.
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2.1 Effective wave number kH

Spherical particles are assumed to be identical and
randomly distributed within a viscous fluid which is
characterized by the mass density ρ0, the adiabatic sound
speed c, the bulk ηv and shear ηs viscosities. In the following,
p and v represent the mean pressure and velocity fields of
the ambient fluid and vp is the mean velocity field of the
particles. The volume of the particles denoted Vp = 4

3πR3

depends on the dynamic radius R of the spheres. At
equilibrum, we have R = R0, ρ = ρ0 and Vp = Vp0 = 4

3πR3
0.

The volume fraction of the particles within the total
suspension volume is denoted as Φ0 with Φ0 = n0Vp0
where n0 is the number of particles per unit volume. In the
following mp = ρpVp0 where mp and ρp denote the mass and
the density of particles respectively.

As we consider a linear acoustical behavior for waves of
sufficiently small amplitude, the average field is governed by
the following set of equations including the mass balance
equation, the momentum balance equation and the second
Newton’s law [7]



(1 − Φ0)
(
∂ρ

∂t
+ ρ0

∂v
∂x

)
= ρ0n0

∂Vp

∂t
− ρ0Φ0

∂vp

∂x
,

(1 − Φ0)ρ0
∂v
∂t

+
∂p
∂x
−

(
ηv +

4
3
ηs

)
∂2v
∂x2 = −n0Fp,

mp
∂vp

∂t
= Fp,

(1)

where the Faxén forces are given by

Fp = 6πR0ηs(v − vp) + 6R2
0
√
πρηs

∫ t

−∞

∂(v − vp)
∂t′

dt′
√

t − t′

+
2
3
πρR3

0
∂(v − vp)

∂t
+

4
3
πρR3

0
∂v
∂t
. (2)

The compressibility is taken into account by the term
ρ0n0∂Vp/∂t in the conservation of mass. Assuming any
component ψ of the different fields are plane waves which
propagate in the direction parallel to the x axis, so that ψ
is the sum of a static field and of an acoustic perturbation :
ψ = ψ0 + ψ̂ exp[i(kH x − ωt)] with ψ̂ << ψ0, the previous
equations read

(1 − Φ0)
(
ω

c2 p̂ − ρ0kH v̂
)

= ρ0Φ0

(
3ω

R̂
R0

+ kH v̂p

)
,

−iω(1 − Φ0)ρ0v̂ + ikH p̂ + k2
H

(
ηv +

4
3
ηs

)
v̂ = −n0F̂p,

−iωmpv̂p = F̂p,

F̂p = [A(ω) + B(ω)] v̂ − B(ω)v̂p,
(3)

with
A(ω) = −i

4
3
πρωR3

0,

B(ω) = 6πηsR0 + 3(1 − i)π
√

2ρηsωR2
0 − i

2
3
πρωR3

0,
(4)

where kH denotes the effective wave number and ω the
angular frequency. Combining the two last equations of the
system Eq.(3) we get

v̂p =
A + B
Ar + B

v̂ and F̂p =
(A + B)Ar

Ar + B
v̂ (5)

with r = ρp/ρ0 the ratio of the particle density to the ambient
fluid density.

In oder to close the system of equations, we have to
intoduce a relation between the applied pressure in the
ambient fluid p̂ and the particle radius R̂, the goal being
to eliminate R̂. As a general rule, Rayleigh-Plesset like
equations, after linearisation, allow to find a function C(ω)
such that

p̂ = C(ω) R̂. (6)

Once C(ω) is known, it can be shown that the effective wave
number kH takes the following general form(

kH

k

)2

=
(1 − Φ0)(1 − D)(1 + rT )

1 + T − i(1 − Φ0)(1 − D)ωτv
(7)

with k = ω/c, and
τv = (ηv + 4

3ηs)/ρ0c2,

T (ω) =
Φ0

1 − Φ0

A(ω) + B(ω)
A(ω)r + B(ω)

=
Φ0

1 − Φ0
t(ω),

D(ω) =
Φ0

1 − Φ0

3ρ0c2

R0C(ω)
=

Φ0

1 − Φ0
d(ω).

(8)

In Eq.(8), τv is a characteristic time of viscosity, d(ω)
represent dilatational effects due to the change of particle
volume (radial oscillations described by the Rayleigh-
Plesset-like equation) and t(ω) represent translational effects
due to the viscous forces exerted on the particles (Faxén
forces). If Φ0 = 0 we get kH = kL with kL = k [1 − iωτv]−1/2

which is as expected the usual dispersion equation in
viscous fluids with no particles. In practical case of a dilute
suspension (Φ0 << 1) with weak absorption (ωτv << 1), we
have (kH/k)2 − iωτv � (kH/kL)2, and Eq.(7) becomes(

kH

kL

)2

= 1 − Φ0 − Φ0 d(ω) + (r − 1)Φ0 t(ω). (9)

For moving rigid speres without compressibility, d(ω) = 0,
and Eq.(9) simplifies to(

kH

kL

)2

= 1 − Φ0 + Φ0
(r − 1)(A(ω) + B(ω))

A(ω)r + B(ω)
. (10)

If the sphere is assumed to be rigid and infinitely heavy (r =

ρp/ρ0 → ∞) Eq.(10) reduces to(
kH

kL

)2

= 1 − Φ0 + Φ0

(
1 +

B(ω)
A(ω)

)
. (11)

2.2 Rayleigh-Plesset like equation for elastic
solid particles

The goal is here to express the dynamic radius of the
elastic solid sphere as a function of the acoustic pressure
at the surface of the sphere. Taking into account the weak
compressibility and viscosity of the ambient fluid, the radial
motion of the sphere in the ambient viscous fluid satisfy the
Keller-Kolodner equation [8]

RR̈
(
1 −

Ṙ
c

)
+

3
2

Ṙ2
(
1 −

Ṙ
3c

)
=

(
1 +

Ṙ
c

)
H +

R
c

Ḣ, (12)

where the function H is given by

H(t) =
1
ρ

[
p(R) − τrr(R) − 4ηs

Ṙ
R
− p∞

]
. (13)
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In the above equation, p(R) and τrr(R) are the pressure and
the normal viscous stress at the external surface of the sphere
and p∞ the pressure far from the sphere. Surface tensions
ares neglected. Due to the hypothesis of long wavelengths,
the radial displacement in the sphere ur can be considered as
quasi-static, so that

ur(r, t) = A(t)r. (14)

Let us note that this hypothesis will be ultimately validated
by comparing the hydrodynamic model with the multiple
scattering theory. The respect of the continuity of the
velocity at the interface r = R leads to write Ȧ(t) = Ṙ(t)/R(t)
and the integration of Ȧ(t) with respect to time yields

A(t) =

∫ t

−∞

Ṙ
R

dt = ln
(

R
R0

)
. (15)

As a consequence, the normal stress at the interface r = R
takes the following form

σ
p
rr(R) = 3Kp ln

(
R
R0

)
, (16)

where Kp = λp + 2
3µp is the bulk modulus and λp and

µp the Lamé parameters of the sphere. Neglecting surface
tensions, the continuity of normal stresses at the interface
are expressed by

σ
p
rr(R) = −p(R) + τrr(R). (17)

Inserting Eq.(16) and Eq.(17) into Eq.(13), we get

H(t) = −
1
ρ0

[
(3Kp) ln

(
R
R0

)
+ 4ηs

Ṙ
R

+ p∞

]
. (18)

The Keller-Kolodner equation Eq.(12) with H(t) defined by
Eq.(18) is what we call the Rayleigh-Plesset like equation for
elastic solid particles.

The goal is now to linearize this one. Assuming that p∞ is
the sum of the static field p0 and of an acoustic perturbation
p̂ with p̂ << p0, we have p∞(t) = p0 + p̂e−iωt and the radius
R can be written similarly R(t) = Re + R̂e−iωt where Re is
the radius of the sphere at the equilibrium state. Substituting
the asymptotic expansions into the Rayleigh-Plesset like
equation for elastic solid particles, and taking into account
the continuity of normal stresses at the equilibrium state,
namely

3Kp ln
(

Re

R0

)
= −p0, (19)

provides

Re(1− iω) p̂ = ( ρc2ω2
+ 4ωηs(i +ω)− 3Kp(1− iω) )R̂ (20)

with ω = ωRe/c. We finally obtain the looked for relation

p̂ = C(ω)R̂ =
ρc2ω2

+ 4ωηs(i + ω) − 3Kp(1 − iω)
Re(1 − iω)

R̂. (21)

At long wavelengths or low frequencies, ω is very inferior to
unity and 3Kp is superior to each term of the numerator in
Eq.(21), it then follows that

p̂ = C(ω)R̂ � −
3Kp

Re
R̂. (22)

In such case, assuming that Re � R0, we have d(ω) �
−ρ0c2/Kp and Eq.(9) takes the form(

kH

kL

)2

= 1 + Φ0

(
1 −

ρc2

Kp

)
+ Φ0

(r − 1)(A + B)
Ar + B

. (23)

This is the basic equation which serves as reference in the
following.

3 Acoustic model
According to the ECAH, the effective wavenumber kA

describing the sound propagation in suspensions is given by(
kA

kL

)2

= 1 − i
3Φ0

(kLR0)3

∞∑
n=0

(2n + 1)AL
n (24)

where kL is the wave number of the longitudinal waves
propagating in the ambient fluid and Φ0 the concentration
of spheres of radius R0. Thus, only the amplitudes AL

n of the
longitudinal waves scattered in the ambient fluid have to be
calculated. In the following, the center of the considered
single sphere coincides with the origin of the coordinate
system (O, r, θ, ϕ). As the incident longitudinal wave is
assumed to propagate in the direction parallel to the x axis
(x = r cosθ), the problem does not depend on the azymutal
angle ϕ.

3.1 General equations
Without loss of generality and whathever the medium,

viscous fluid or solid spheres, the displacement field u is the
solution of the equation of motion

ρω2u + (λ + 2µ)~O~O.u − µ~O × ~O × u = 0 (25)

where ρ is the mass density and λ and µ are the Lamé
parameters. Assuming the Helmholtz decomposition of the
displacement u = ~OφL + ~O × (rφT er), the potentials φL and
φT associated to the longitudinal and transverse components
of the waves can be expanded in spherical harmonics
(m = L,T )

φm(r, θ) =

∞∑
n=0

in(2n + 1)Am
n zn (kmr) Pn(cos θ), (26)

where km = ω/cm are the wave numbers associated to the
longitudinal cL =

√
(λ + 2µ)/ρ and shear cT =

√
µ/ρ wave

velocities, Pn are Legendre polynomials, zn are spherical
Bessel functions of order n and Am

n are the unknown
scattering coefficients calculated from the appropriate
boundary conditions. The normal ur and tangential uθ
displacements and the normal σrr and tangential σrθ stresses
at the interface r = R0 can therefore be expressed by

ur(R, θ) =

∞∑
n=0

in(2n + 1)
Pn(cos θ)

R

(
AL

n UL
n + AT

n UT
n

)
,

uθ(R, θ) =

∞∑
n=0

in(2n + 1)
1
R

dPn(cos θ)
dθ

(
AL

n VL
n + AT

n VT
n

)
,

σrr(R, θ) =

∞∑
n=0

in(2n + 1)
Pn(cos θ)

R2

(
AL

nΣL
n + AT

n ΣT
n

)
,

σrθ(R, θ) =

∞∑
n=0

in(2n + 1)
1

R2

dPn(cos θ)
dθ

(
AL

n T L
n + AT

n T T
n

)
,

(27)
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where the functions Um
n , Vm

n , Σm
n and T m

n are given by

UL
n = nzn(KL) − KLzn+1(KL),

UT
n = n(n + 1)zn(KT ),

VL
n = zn(KL),

VT
n = (1 + n)zn(KT ) − KT zn+1(KT ),

ΣL
n =

[
2n(n − 1)µ − (λ + 2µ)K2

L

]
zn(KL),

+4µKLzn+1(KL),
ΣT

n = 2n(n + 1)µ [(n − 1)zn(KT ) − KT zn+1(KT )] ,
T L

n = 2µ [(n − 1)zn(KL) − KLzn+1(KL)] ,
T T

n = µ
[(

2(n2 − 1) − K2
T

)
zn(KT )

+2KT zn+1(KT )] ,

(28)

with Km = kmR0 (m = L,T ).

3.2 Scattering coefficients for an elastic solid
sphere fixed in space

From now on, the elastic solid sphere is characterized by
the mass density ρp and the Lamé parameters λp and µp. The
fluid is Newtonian and is characterized by the mass density
ρ0, the adiabatic sound speed c, the bulk ηv and shear ηs

viscosities. In order to use the previous general expressions,
the Lamé parameters of the fluid are defined byλ = ρ0c2 − iω

(
ηv −

2
3
ηs

)
,

µ = −iωηs,

(29)

so that cL = c
√

1 − iωτv and cT =
1 − i

2

√
2ωηs

ρ0
where τv =

(ηv + 4
3ηs)/ρ0c2 is a characteristic time of viscosity.

In order to calculate the AL
n scattering coefficients

associated to the longitudinal waves scattered by an solid
sphere fixed in space and immersed in a viscous fluid,
the potentials must be specified for each wave. The scalar
potential of the incident wave φI , those of scattered waves in
the ambient fluid φm and those corresponding to the fields in
the sphere φs

m (m = L,T ) are expressed by
φI(r, θ) =

∑∞
n=0 in(2n + 1) jn (kLr) Pn(cos θ),

φm(r, θ) =
∑∞

n=0 in(2n + 1)Am
n hn (kmr) Pn(cos θ),

φs
m(r, θ) =

∑∞
n=0 in(2n + 1)Bm

n jn
(
ks

mr
)

Pn(cos θ),
(30)

where jn is the spherical Bessel function and hn the spherical
Hankel function of the first kind which is an outgoing
spherical wave when considering the exp(−iωt) time
harmonic dependence. The amplitudes Um

n , Vm
n , Σm

n and T m
n

(m = I, L,T ) of the waves in the fluid and the amplitudes
U(s,m)

n , V (s,m)
n , Σ

(s,m)
n and T (s,m)

n (m = L,T ) of the waves in the
sphere are given by relations Eq.(28) with Km = kmR and
K s

m = ks
mR.

The boundary conditions for a solid sphere immersed in
a viscous fluid are the continuity of normal and tangential
displacements and the continuity of normal and tangential
stresses. Substituting Eq. (27) and Eq.(28) into the boundary
conditions leads to the matrix equation

UL
n UT

n −U p,L
n −U p,T

n

VL
n VT

n −V p,L
n −V p,T

n

ΣL
n ΣT

n −Σ
p,L
n −Σ

p,T
n

T L
n T T

n −T p,L
n −T p,T

n

 .

AL

n
AT

n
BL

n
BT

n

 = −


U I

n
V I

n
ΣI

n
T I

n

 (31)

from which the amplitudes AL
n are straightforwardly

calculated. If the sphere is assumed to be infinitely rigid
(λp → ∞ and µp → ∞) and infinitely heavy (ρp → ∞),
the boundary conditions correspond to the cancellation of
displacements ur and uθ of the fluid at the interface r = R.
The amplitudes of the waves in the ambient fluid therefore
satisfy the matrix equation(

UL
n UT

n
VL

n VT
n

)
.

(
AL

n
AT

n

)
= −

(
U I

n
V I

n

)
, (32)

and takes the form

AL
n = −

f I
n

f L
n
, (33)

with

f m
n =KLzn+1(KL) [(n + 1)hn(KT ) − KT hn+1(KT )]
− nzn(KL)KT hn+1(KT ) (34)

where zn ≡ jn if m = I and zn ≡ hn if m = L.

3.3 Scattering coefficients for moving rigid
spheres

The goal of this subsection is to take into account the
mass mp = (4πR3

0/3)ρp and the velocity vp of a moving
rigid sphere in the calculation of AL

n . Unlike the previous
case, Faxén forces are explicitly introduced to calculate the
amplitudes AL

n . This is the reason why we speak of modified
ECAH theory when we use these coefficients that depend on
the velocity vp in order to obtain kA. Analytical calculations
follow broadly those of Temkin and Leung [6]. As the rigid
sphere follows the polarization of the incident longitudinal
plane wave, the velocity of the sphere is along the x-axis

vp = vpe−iωtex. (35)

This velocity is related to the linearized Faxén force Fp

acting on the sphere by the relation

mp
∂vp

∂t
= Fp, (36)

where Fp is given by

Fp =

∫ 2π

0

∫ π

0
σ.erR2 sin θdθdϕ (37)

with σ the stress tensor in the viscous fluid. Due to Eq.(36),
the Faxén force Fp is also polarized along the x-axis (Fp =

Fp.ex). Inserting Eq.(27) into Eq.(37) yields

Fp =
4
3
π
[
AL

1

(
ΣL

1 + 2T L
1

)
+ AT

1

(
ΣT

1 + 2T T
1

)
+ΣI

1 + 2T I
1

]
(38)

and using Eq.(36) we get

vp =
i

ωρpR3

[
AL

1

(
ΣL

1 + 2T L
1

)
+ AT

1

(
ΣT

1 + 2T T
1

)
+ΣI

1 + 2T I
1

]
. (39)

The amplitudes of scattered waves are then determined from
the boundary conditions which are the continuity of normal
and tangential velocities at the interface r = R, namely−iω

(
ur + uI

r

)
= vp cos θ,

−iω
(
uθ + uI

θ

)
= −vp sin θ.

(40)

CFA 2014 Poitiers 22-25 Avril 2014, Poitiers

471



Substituting Eq.(27) into the above boundary conditions
gives

[
AL

n UL
n + AT

n UT
n + U I

n

]
Pn(cos θ) = i

R
ω

vp cos θ,[
AL

n VL
n + AT

n VT
n + V I

n

]
P1

n(cos θ) = −i
R
ω

vp sin θ.
(41)

Due to the orthogonality of Legendre polynomials, the
amplitudes of the modes n , 1 are solutions of the matrix
equation Eq.(32) and that of the mode n = 1 is solution of
the matrix equation(

UL
1 + XL UT

1 + XT

VL
1 + XL VT

1 + XT

)
.

(
AL

1
AT

1

)
= −

(
U I

1 + XI

V I
1 + XI

)
, (42)

with

Xm =
Σm

1 + 2T m
1

ρp(ωR)2 , where m = L,T, I. (43)

Thus, the amplitudes of the modes n , 1 are given by Eq.(33)
and that of the mode n = 1 by the following relation

AL
1 = −

f I
1

f L
1

(44)

with

f m
1 = (Um

1 + Xm)(VT
1 + XT ) − (Vm

1 + Xm)(UT
1 + XT ). (45)

4 Analytical comparison of the two
models

In order to compare both models analytically, it is
necessary to make assumptions. They have already been
introduced in section 2 where the dilution and the weak bulk
absorption are supposed to be small. We have also implicitly
assumed that Kp should be large enough so that the particles
are not too compressible as in the case of bubbles. Finally,
it is also assumed that wavelengths are large because it
is a basic assumption of the hydrodynamic model. More
accurately, we consider the frequency range defined by
kR0 < 10−1. In this case, only the first two modes have to be
taken into account in the ECAH theory.

The goal of this section is to get the asymptotic
expansions of the wave numbers kA of the acoustic model,
and to compare these ones to those obtained in section 2 with
the hydrodynamic model. We will successively compare
three cases : the heavy rigid sphere, the moving rigid sphere
and the elastic solid sphere.

Throughout the following, we use the asymptotic
expansions of Bessel and Hankel spherical functions
with small argument KL in order simplify the analytic
expressions. As the velocity of the bulk transverse wave in
the fluid is much smaller than that of the bulk longitudinal
wave, asymptotic expansions are used only for the spherical
functions of variable KL.

4.1 Heavy rigid spheres
Calculations are quite simple, we find that

AL
0 ≈ −i

K3
L

3
,

AL
1 ≈ −

K3
L

6

 3i
K2

T

+
3

KT
− i

 . (46)

Taking into account Eq.(4), the amplitude AL
1 can be put in

the form

AL
1 = i

K3
L

9

(
1 +

B
A

)
, (47)

and inserting Eq.(46) into Eq.(24) yields(
kA

kL

)2

= 1 − Φ0 + Φ0

(
1 +

B
A

)
. (48)

Therefore, the wavenumber calculated by both models are
exactly the same at the order of approximation that we
consider. As expected Faxén forces which are related to
tanslational effects have an influence only on the amplitude
of the mode n = 1.

4.2 Moving rigid spheres
The approximate expression of AL

0 is the same for fixed
and moving rigid spheres, namely Eq.(46). It is not surprising
because dilatational and translational effects are decoupled in
dilute suspensions.

The calculation is more complicated for the mode n = 1.
Inserting Eq.(28) with n = 1 in Eq.(45) gives

f m
1 =KT h2(KT ) [KLz2(KL) − z1(KL)] − 2KLz2(KL)h1(KT )

+
KLKT

ρp(ωR)2

[
2µKT h1(KT )z2(KL)

+(λ + 2µ)KLz1(KL)h2(KT )
]
. (49)

As before, taking into account exact expressions of hn(KT )
and asymptotic expansions of jn(KL) and hn(KL) and using
the expression Eq.(4) of the functions A(ω) and B(ω), we get

f I
1 =

iKLeiKT

6πRηsrK2
T

(A + B)(r − 1), (50)

and

f L
1 = −

3eiKT

2πRηsr(KLKT )2 (rA + B). (51)

Subsituting Eqs. (50) and Eq.(51) into Eq.(44) leads to the
expression of the amplitude of the mode n = 1

AL
1 ≈ i

K3
L

9
(r − 1)(A + B)

Ar + B
. (52)

Then, inserting Eq.(52) into Eq.(24) leads to the expression
of the effective wavenumber(

kA

kL

)2

= 1 − Φ0 + Φ0
(r − 1)(A + B)

Ar + B
. (53)

For moving rigid spheres as for fixed rigid spheres, the
effective wavenumber obtained by the acoustic model
Eq.(53) and the hydrodynamic model Eq.(10) are exactly
the same. Note that Faxén forces and the particle velocity
(vp , 0) were explicitly introduced in both models for
moving rigid spheres. So, we deal with the modified ECAH
theory in this case.

4.3 Elastic solid spheres
After tedious calculations we can show that

AL
0 = −i

K3
L

3
Kp − K

Kp +
4
3
µ

(54)
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with K = λ + 2µ/3. If the bulk modulus Kp increases, the
sphere tends to become rigid, and the amplitude of the mode
n = 0 tends to the one related to fixed and moving rigid
spheres Eq.(46). It may be noted that the mass of the sphere
has no influence on the amplitude of the mode n = 0, that is
to say on the dilatational effects. Moreover, it is worth noting
that dilatational effects disappear if the bulk moduli of both
media are equal (Kp = K). Moreover, we get

AL
1 =

iK3
L

3
(1 − r)(3 − 3iKT − K2

T )

9iKT − 9 + K2
T + 2r(KF

T )2
, (55)

and taking into account the expressions Eq.(4) of functions
A(ω) and B(ω), the amplitude of the mode n = 1 has finally
for expression

AL
1 =

iK3
L

9
(r − 1)(A + B)

B + rA
. (56)

This one is exactly the same as for the moving rigid sphere
Eq.(52). This means first that Faxén forces for elastic solid
spheres are well approximated by Faxén forces of moving
rigid spheres. Then, because the amplitudes AL

1 are the same,
we can conclude that the velocity of the elastic solid sphere is
taken into account by the ECAH theory even if the velocity
(vp , 0) is not explicitely introduced in the calculation of
elastic coefficients AL

n as it was done for the moving rigid
sphere. So it seems that the case of rigid spheres is apart,
since we have to consider the case of fixed and moving rigid
spheres separately.

Substituting the amplitude of the modes n = 0 and
n = 1 into Eq.(24) leads to the expression of the effective
wavenumber(

kA

kL

)2

= 1 − Φ0
Kp − K

Kp + 4
3µ

+ Φ0
(r − 1)(A + B)

B + rA
, (57)

and, assuming that Kp >> K with K = λ+ 2µ = ρ0c2 − 4µ/3,
we get(

kA

kL

)2

= 1 − Φ0

(
1 −

ρ0c2

Kp

)
+ Φ0

(r − 1)(A + B)
B + rA

. (58)

In the case of elastic spheres, the effective wavenumbers
obtained by the acoustic Eq.(58) and hydrodynamic Eq.(23)
models are exactly the same. Furthermore, if the bulk
modulus Kp increases, the sphere tends to become rigid, and
Eq.(58) tends to Eq.(53).

5 Conclusion
The comparison between the hydrodynamic and

acoustic models describing the sound propagation in
dilute suspensions of spheres has been performed for long
wavelengths and small bulk absorption in the ambient fluid.
On one side, the hydrodynamic model is a combination
of Faxén formula, valid for a moving rigid sphere,
and a Rayleigh-like equation to take into account the
compressibility of the sphere. On the other side, the acoustic
model is based on the long wave limit of ECAH theory for
an elastic sphere embedded in a viscous fluid. Analytical
calculations show that both models are strictly equivalent.
Therefore, the Rayleigh-Plesset like model that we
developed in order to describe the dilatation of elastic solid

spheres and close the system of hydrodynamic equations
is validated. The analytical calculations highlighted the
following significant results :

? Even if the center of the sphere is fixed in the acoutic
model, the dipolar term, mode n=1, implies that the center of
mass is moving. In linear regime, this contribution gives the
Faxén formula exactly.

? In linear regime, both contribution are independent.
The mode n = 0 is related to the compressibility contrast
between the sphere and the liquid. It models the differential
change of volume between the two phases. On the contrary,
the mode n = 1, does not depend on the compressibilities
but takes into account the visco-inertial effects related to the
contrast of density, i.e it models the relative displacement
between the two phases.

? If the sphere is assumed rigid in the ECAH model, the
mode n = 1 is canceled by assumption. In that case, Faxén
formula can be recovered only if the movement of the sphere
is explicitly introduced.

If the comparison of both models has been performed for
dilute suspensions of elastic solid spheres for which Kp >>
K, a more general comparison for other particles like bubbles
for which Kp << K has to be done.

Remerciements
The authors acknowledge funding from the French

Agengy for research (ANR-11BS09-007-03) project
DiAMAN.
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