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The transmission-line matrix (TLM) method has recently been updated for the simulation of outdoor sound
propagation. In this framework, sound propagation through forest is currently studied using the TLM method.
Multiple scattering caused by tree-trunks is one of the three main phenomena encountered inside forested area
which can significantly influence sound wave propagation. This paper presents the TLM simulations related to
both single and multiple scattering, where every numerical results are compared to analytical solutions. For every
multiple scattering simulations, the scatterers’ locations are related to the distribution processes used in spatial
forest structure analysis. Correct agreement are found between the numerical results and the analytical solutions,
which would constitute a first step for the TLM method validation in the vicinity of forest.

1 Introduction

Sound propagation through forest is mainly influenced by
the three following phenomena: low-frequency absorption
from ground effect, sound scattering by tree-trunks and
sound fluctuations caused by the local meteorological
effects. A good introduction to each one of these acoustic
phenomena occurring when a sound wave travels inside
forests can be found in [1, 2, 3]. Among these, the sound
scattering by tree trunks is considered to be significant when
the frequency of the acoustic waves is close to the apparent
diameter of the trunks. Interactions between scattered
sound waves could give rise to constructive or destructive
interferences for example. This would impact directly the
sound level predictions in the vicinity of forests.

The influence of sound scattering is investigated using
the transmission-line matrix (TLM) method. This time-
domain method enables to simulate acoustic propagation
in medium related to outdoor sound propagation [4]. The
theory related to the TLM method is reminded in the next
section. The third section presents 2D-simulations carried
out with a single scatterer. Each of the following TLM
simulations are compared to analytical solutions and can be
considered as a first validation step in the study of multiple
scattering. In the forth section, multiple scattering from 2D
circular scatterers is investigated from the TLM simulations
and compared to analytical solutions.

2 The TLM method for acoustics

The TLM method simulates wave propagation of
pressure pulses inside a spatial mesh where pressure pulses
travel from a node to its neighbors through transmission
lines [5]. Incident pulses o i) and scattered pulses tS’” for
a given node position (i, j) are depicted by figure 1. Indexes
n and m correspond to the number of the branch where
pulses are traveling. Incident and scattered pulses can be put

Figure 1: Incident tI” 0. and scattered .S 7 i) pulses for a node
(7, j) at the time ¢ for an homogeneous and non dissipative
medium (2D).
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into vectors as follow:
1 2 3 49T
Ay = [els oI55 5 0 ](i’j)’
tS(i,j) = [tSl; tSz; tS3; lS4](Ti,j)

D
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where (i, j) corresponds to the node position in the
discretized TLM network and the exponent 7 denotes the
transposed of the original vectors J; and ,S; ;. The
scattering process for each node of the transmission-line
network is written as:

S = Dajp day 3)

where ;D ; is the scattering matrix which gives the
proportion of reflected and transmitted pulses at every node
of the TLM network.

In the case of outdoor sound propagation, physical
phenomena such as atmospheric turbulence induce
heterogeneities of the propagation medium. Atmospheric
absorption induces additional dissipation which should
be taken into account in the model. Both phenomena are
implemented in the TLM method through the introduction
of specific additional branches.

Heterogeneities

It has been shown [6] that an additional branch at each
node can be used to set the local sound celerity. This
approach introduces the parameter n that allows to modify
the local impedance through an additional fifth branch of
length 6//2. This branch presents a characteristic impedance
Zy/n (see Fig. 2), where Z; corresponds to the characteristic
impedance of the main branches.

Dissipation

Dissipation phenomena can be simulated for a given
frequency by adding a branch. This branch presents an
anechoic termination and a specific impedance Zy/{. As
the termination of the dissipation’s branch is anechoic, the
wave that travels in such a branch is neither transmitted nor
reflected.

Therefore, to simulate acoustic propagation in an
heterogeneous and dissipative medium the TLM network
has to be modified as shown in figure 2, which gives rise to
five incident and scattered pulses.

“4)
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tS(i,j) = [tSI; ST ST ST S ]g,j),

where ,I° and ,S3 corresponds to incident and scattered

pulses from the additional fifth branch which aims at
introducing heterogeneities in the transmission-line network.
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Figure 2: Additional branches for acoustic propagation in an
heterogeneous and dissipative medium (2D).

The superposition principle allows to write the pressure
at a given node position as follows:

4
Z iy + 1 flfi,j)l- (©)

n=1

2
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Naj +Sap +4

At a given node position (i, j), each scattered pulse ;S™
travel along the discretized distance 6/ during the time 6 and
becomes an incident pulse ,.s/" at an adjacent node. For the
node position (i, j), this is written as:

1 _ 2
t+6t1(,',j) = tS(i_l,j), (7a)
=Sk, (7b)
t+0t (i,j) 0 (i+1,j)°
3 4
t+6t1(l‘,j) = tS(,',j_l), (7¢)
Ir= .83 (7d)
1461830, ) T 19 (i, j+ 1)
t+6t1(5,',j) =t S(Si!j)- (76)

From the combination of the matrix relation, the
connexion laws and the nodal pressure definition, the
iterative schemes for heterogeneous and dissipative TLM
network is written as:

46t PGj) = [Pt + Pi-1,)

MGj) + iy +4
+ PG+t iPG-1) F G PGjp)]
Mg~ Lip +4

siPiih 8
My + iy + 4" obep ®)

where time and spatial derivatives can be identified to give
the wave following wave equation:

0. 9
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3 Scattering of a plane wave by a
single cylinder

3.1 Theory

The propagation of a monochromatic acoustic wave
in the vicinity of a circular scatterer with a radius a in a
cylindrical coordinate system (7, ¢, z) can be written as the
sum of cylindrical waves as follows [7]:

pi= Po Y (2= 8u)i" Jyy (ki) €7 6, (10)

m=0
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where k is the wave number, w the angular frequency, Py the
amplitude of the incident wave, d,,9 the Dirac function and
Jn 1s the Bessel function of the first kind for real order m.
The scattered wave is written as divergent cylindrical wave

ps = Po Y AHD (kr) e ¢, (11)
n=0

where H,(,l) is the Hankel function of the first kind for real
order n. The coefficients A, are derived from the boundary
condition which can be written at r = a:

i 0 -1
ag(m +ps) = ?(Pi +py), forr =a, (12)

where Z is the normal acoustic impedance of the cylinder, p
is the mass density and c¢ the sound speed in the air. Thus,
the coeflicients A, can be written as [7]:

(2= 6u0)i"[id;(ka) + (pc/Z)Ju(ka)]

An = Iy )
iH (ka) + (pc/Z)H." (ka)

13)

Through this coefficient A,, the surface impedance of the
cylinder can be taken into account.

3.2 Principle and geometries
3.2.1 Instantaneous pressure fields

Figure 3 shows the geometry of the numerical model
where a monochromatic plane wave of frequency f = 100 Hz
coming from the left hit a perfectly rigid cylinder. The top,
bottom and left boundaries are considered as perfectly rigid
whereas the right boundary is made of an absorbing layer.
The simulation duration is set to not allow the scattered wave
to hit the boundaries. The difference in magnitude of the

Figure 3: Distribution of pressure magnitude from the TLM
model: scattering of rigid cylinder with a monochromatic
plane wave incidence.

instantaneous pressure are depicted by different gray levels,
where the intermediate gray shade represents zero whereas
the darker and brighter shows respectively the minimal and
maximal pressure magnitudes.

3.2.2 Geometries and calculation process

TLM calculations are carried out in two main steps:
first, TLM simulations are performed without cylinder
for a given monochromatic excitation in the computation
domain depicted by figure 4. This first step gives the
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incident pressure field which root mean square value: p; s,
is calculated at every receiver position. The second step
consists in running TLM simulations with the cylinder and
the same excitation signal (see Fig. 4). This second step
gives the total pressure field, i.e. the incident and scattered
pressure fields. Finally, subtracting the incident pressure
field of the first simulation from the total pressure field of the
second simulation gives the scattered pressure field p, for
every simulation. The root mean square scattered pressure
is calculated from the scattered field p; s over four periods
at every receiver placed around the cylinder as depicted
in figure 4. The sound level pressure Ly, (in dB) of the
scattered field relative to the incident field obtained from the
TLM calculation is given by:

where p,rms and p;ms are respectively the scattered and
incident root mean square pressures.

The source signal corresponds to a monochromatic plane
wave which frequency is set at a given value for every
simulation. The cylinder diameter and location are fixed
at the same values for every simulation. This allows to
repeat the simulations with exactly the same geometrical
configuration for several frequencies. In order to look at a
range of ka that is significantly large, the frequency of the
source signal is taken in the frequency range [200 - 1600]
Hz. In the following TLM simulations the cylinder is located

Lyat = 1010g, (p sorms (14)

i,rms

/— Receivers

- ~

,\— Line source (sinus: f =200 Hz - 1600 Hz)

Figure 4: Computational domain of the TLM simulations for
the calculation of the pressure field scattered by a circular
and acoustically rigid scatterer.

in the center of the computational domain, the radius of the
cylinder is: a = 0.25 m and the distance between the center
of the cylinder and every receiver r = 5 m. The simulations
duration is set to not exceed 0.06 s, which does not allow the
scattered field to reach the boundary of the computational
domain for every simulation. This simulation duration
enables to get at least four time periods of the source signal
at every receiver for averaging the pressure field to calculate
the root mean square pressure of both incident and scattered
fields.
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3.3 Comparisons between TLM calculations
and the analytical solutions

The aim is to compare the directional pattern of the
scattered field obtained from the TLM calculation with the
theory seen in section 3.1.

The scattered pressure level obtained from the TLM
calculations are compared to the theoretical scattered level. It
is important to keep in mind that TLM simulations presented
in this section consider a monochromatic incident plane
wave propagated toward a perfectly rigid circular scatterer.
Figure 5 shows the polar variation of the scattered pressure
field level obtained after the plane wave hit the cylinder (see
Fig. 4). Every simulation corresponds to a given frequency
of the line source constricted in the frequency range [200 -
1600] Hz.

From figure 5 it can be seen that every simulation the
scattered level pattern is in good agreement with the theory.
For few angles where the scattered level is highly fluctuating,
some of the pattern resulting from the TLM simulations
are slightly different compare to the theory. This can be
explained by a slight difference between the theoretical
receiver positions depicted in figure 4 and there real position
on the discretized square TLM network. Moreover, the
definition of the circular shape of the scatterer can be altered
by the discretization process, i.e. the scatterer is not perfectly
circular on its whole circumference. More especially if the
scatterer surface is transverse to the TLM-grid the circle
is approximated by steps which length is equal to the
spatial step. This approximation can explain some of the
discrepancies especially at high frequencies. The results
shows, however, that the TLM method enables to take into
account the scattering of an acoustic wave by a single rigid
circular scatterer.

4 Multiple scattering

4.1 Theory from Twersky’s average wave-
function [8]

In this section, the physical quantity of interest is the
mean energy density ||, extracted from the work of
Twersky [9, 10]. Considering an incident plane wave which
travels through an array of scatterers. This array can be seen
as a linear time-invariant system which can be characterized
from the study of the scattering phenomena inside the
system. The waves traveling inside the array of scatterers
can be split into two parts: one is transmitted to the end
of the array and the other is back-scattered. Embleton [8]
reminds that such phenomena can expressed with the
average wave transmitted 7" and reflected R [9] given by:

2W
T = 7;An, (15)
and
2N &,
R= 7;<—1> A, (16)

where W is the number of scatterer per square meter, N is
the total number of scatterer, k is the wavenumber and the
coefficient A,, is given by:
iJy(kr) + (Z/pc)J, (kr)
iH,(kr) + (Z]pc)H, (kr)’

a7

n=
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ka = 0.960
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Figure 5: Sound level pressure L for analytic solutions
(Bruneau [7]) (red solid line: —) and TLM calculations
(black dashes: - -): (a) ka = 0.960 ; (b) ka = 2.883 ; (¢) ka =
4.805 ; (d) ka = 7.687.

From equations (15) and (16) Twersky [9] defines two
quantities y and g given by:

v = (k-iT)?+R? (18)
and
q= [T +ik—-iy)/R, (19)

where vy is the complex propagation constant and ¢
corresponds to the balance between the transmitted and
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back-scattered field. The incident and transmitted wave field
are written as:

" 4 gem 2

vi=1-q) 1= el (20)
and
, el
‘l’zZ(l—Q)m, 21

where ¢; and iy, describes respectively the internal and
the transmitted wave field. Embleton [8] studied the mean
energy loss, which can be written as:

where i, 100, is the mean energy density calculated for a
scatterers array of 100 feet (30.48 m) length and normalized
with respect to Wa = 1072m~!, where W is the scatterer’s
density and a the scatterers’ radius.

il

— (22)
W 1005/

EL = 10log,, (

4.2 Numerical results
4.2.1 Geometry of the simulations

TLM calculations are carried out with a sinusoid line
source which frequency ranges from 50 Hz to 800 Hz.
The transmission-line network is defined as a square lattice
which spatial step is set equal to 6/ = 2.5 107> m. This
spatial step corresponds to a sampling frequency equivalent
to A/17 for the maximal frequency 800 Hz.

As shown in figure 6, the computational domain consists
mainly of a scatterers area, which is placed between the line
source and the line of 10 receivers. The scatterers area is
defined by its surface (S scat) i-€. the array where the scatterers
are located, the radius of the scatterers (a) and the number of
scatterer per square meter (W). In the following simulations
the 2D computational domain can be seen as a corridor where
a line source is placed at the entrance and a line of receivers
is located near to the end of the corridor length. Boundaries
along the length are perfectly reflecting also named as cyclic
boundaries in [11]. Two absorbing layers based on the one-
way approach [12] are placed at the entrance and at the very
end of the corridor.

y
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E =~ |2

Se o) =

o 2 [} o

g Ze Scatterers area: Sgea, a, W. -g. 5

5| 2 < 2

_8 So " k%

<C o . a

Rigid boundary
> X

Figure 6: Computational domain of the TLM simulations
for the study of multiple scattering.

The complete computational domain is an array of
10 m x 445 m. An example of the scatterers area is
depicted in the next section (see Fig. 7). The scatterers
are randomly distributed within the scatterers area with
respect to the Gibbs point process described in the following
section. Therefore, the transmission-line network is made
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of: (ny = 1780) x (n, = 400) = 7.12 10° nodes. The
line source is located at x = 4 m along the y-axis and the
receivers are located at x = 34.48 m parallel to the y-axis
(See Fig. 6). This gives a distance between the source and
the receivers equal to 30.48 m (100 ft) as used in [8]. The
time step for every simulation is 6 = 5.4 107 s. The
simulation duration is ty, = 0.41 s. The scatterers are
two-dimensional circles which radius is constant and set
equal to a = 0.10 m. Three scatterers densities W and three
area’s lengths are tested in the following TLM simulations.
The surface of the scatterers is considered as acoustically
rigid.

4.2.2 Distribution process for the scatterers locations

The spatial point process model can be seen as a
mathematical model which is commonly use for the
definition of the trees locations in the study of forests
structures. Among the point processes, the Gibbs point
process enables to define the interactions between the points
from a pair potential function. As an interesting feature
for the present study, the Gibbs point process allows to
define a "hard-core” condition in order to avoid scatterers
superpositions. An example of the scatterers distribution
where Wa = 107>m~! used as a reference is given in
figure 7(a) with the corresponding pair potential function
(c). The analysis of the spatial distribution of the scatterers
resulting from the point process is carried out with the
Ripley function K(r) and the Besag function L(r) (see fig. 7
(c) and (d)). The Ripley function can be written as [13, 15]

ilizku
W N R

=1 Jj#i

K(r) = (23)

where W is the density, N is the total number of scatterers,
and k;; is equal to 1 if the distance between the points i and
Jj is inferior to r, and zero if not. The Besag function is
written [14, 15]

K(r)
n

L(r) =

—r. 24)
Both functions got the same information, but in some cases
the Besag function can be easier to interpret.

In this work we are interested in distributions where
the position of a given point is independent of the other
points’ distribution. This is the definition of a Poisson’s
distribution, which is equivalent to the assumption of
complete randomness.  This distribution is often used
as a basic reference in the study of spatial structure of
forests [15]. In figure 7(c) and (d) both Ripley and Besag
functions are compared to the ideal Poisson’s distribution
(solid black lines). The edge effect [16] (blue solid lines)
has been integrated to the initial calculation (solid red lines)
to take into account the divergences of k;; (Eq. (23)) for the
points located close to the edges. In figure 7(c) and (d), it
can be seen that the corrected values are close to the Poisson
process which ensures a random distribution for the distance
r = [0; 3.5] meters. Every scatterers areas considered in the
following sections are defined with respect to this random
distribution hypothesis.

Distance y-axis (m)

_—
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Figure 7: Reference scatterers area for a = 0.10m and
Wa = 107>m™! obtained from the Gibbs process: (a)
scatterers area ; (b) pair potential function: f(r) ; Ripley
function: K(r) ; Besag function: L(r).

4.2.3 Comparison between the TLM calculations and
the analytical solutions

Increase of density

The influence of the density is tested using two values
of the factor Wa: Wa = 2.10>m~!' and Wa = 3.10>m™".
The scatterer radius is set equal to a 0.10 m for every
scatterers area. It is important to keep in mind that the
scatterers area defined in figure 7 with Wa = 107>m™! is
used as a reference for the calculation of the attenuations
(see Eq. 22). Figure 8 shows a comparison between the
attenuation obtained form the TLM calculations and the
theoretical attenuations calculated from the section 4.1). It
can be seen that for both cases the TLM results are in good
agreement with the theory for low values of ka up to ka = 1.
Above this limit the attenuations are slightly fluctuating
around the theoretical curves. From ka = 1 the directivity
pattern around the circular scatterer is no longer assumed to
be omnidirectional. Thus, the initial sound wave is scattered
in specific directions and the interactions between every
scattered wave become more complex. This induces a larger
fluctuation of the pressure at the outside of the scatterers
area. Such discrepancies has already been observed in a
larger extent from finite-differences time-domain (FDTD)
simulations by Heimann for several densities and scatterers’
radius [11]. The present results show that the TLM method
is in good agreement with the theory for low ka values and
corroborates the observations done with the FDTD method.
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Figure 8: Attenuations calculated with a reference domain
where Wa = 1072m™! for a scatterers domain where
Wa =2.102m™" (black points), and a scatterers domain
where Wa = 3.1072m™! (red crosses) in comparison to the
corresponding theoretical attenuations.

5 Conclusion

The aim of the present paper is to investigate the
TLM method’s ability to simulate multiple scattering by
tree-trunks that occurs inside forests. As a first step, the
scattering of a plane wave on a single circular scatterer
has been studied. From the comparison between the TLM
simulations and the analytical solutions, it has been shown
that the TLM method enables to take into account sound
scattering from an acoustically rigid circular cylinder.
In the last section, multiple scattering is studied, after
discussing the distribution process used for the placement
of the scatterers. The acoustic field scattered by an array of
randomly placed circular scatterer has been simulated with
the TLM method. It has been shown that for two densities
the numerical results are in good agreement with the theory
for ka < 1. Above this limit, the numerical scattered levels
are fluctuating around the theoretical values. Such results
corroborate the observations done with the FDTD method
in [11]. This confirmed the ability of the TLM method to
deal with scattering problems. These are encouraging results
for the study of forested area using the TLM method.
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