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The relationship between volume velocity of a small compressor driver in a closed-box baffle and sound pressure
in an acoustic space was investigated experimentally. The principal factors influencing sound radiation of a closed-
box loudspeaker in a free space is the vibration pattern of the driver and diffraction effects due to the cabinet.
A compression driver was tested, its radiation characteristics confirming that it can be seen as a simple volume
velocity source at low frequencies. The experimental characterisation of the driver should not depend on its
acoustic loading, and a load invariant metrics was established using an internal pressure microphone. The driver
volume velocity was estimated using four techniques: the adiabatic gas law in a small compression chamber, laser
velocimetry on the axis of the driver, free space pressure response in an anechoic room, and travelling waves
in a pipe. The metrics enables experimental estimation of transfer impedances. The loudspeaker was modelled
by a vibrating flat circular disk in an otherwise passive and closed box. The sound field was computed by an
expansion into multiple simple sources interior to the box. Measured and computed transfer impedances are of
similar magnitude and phase.

1 Introduction
When a driver’s diaphragm is small compared to the

wavelength and if its entire surface moves in phase, the
driver can be considered as a simple source [1]. Acoustic
response to a simple source can be expressed by a transfer
impedance Z. A transfer impedance relates volume velocity
Q of the driver in s to sound pressure p in f

Z(f|s) =
p(f)
Q(s)
. (1)

A driver becomes inefficient when the wavelength increases
as the radiation resistance decreases, whereas at higher
frequencies the driver either breaks up or develops
pronounced directivity and thereby ceases to be a simple
source [1]. A limited frequency range of an acoustic
source can be extended by subsequent measurements using
increasingly smaller drivers.

Transfer impedance(s) can be computed numerically,
e.g. by finite element method. An alternative method is
by superposition of sound fields from substitute sources
representing the original vibrating body. There are a few
benefits of working with substitute sources compared
to the finite element method. The discretisation of a
volume is conveniently replaced by the discretisation of an
enclosing surface. Using the source substitute method the
reconstruction error of normal velocity on the enclosing
surface is known and the solution of the wave equation is
exact.

The driver characterisation and radiation model hereby
described has been developed as part of research on
airborne characterisation of vibrating bodies. The developed
characterisation method assumes that sound radiation
by a complex source can be represented by sound field
superposition of a limited number of small radiators set in a
rigid closed baffle of similar shape and volume. Sound in a
listening position f by a source with an enclosing surface S
and velocity v(s) is [2]:

p(f) =
∫

S
Z(f|s) v(s) · n dS . (2)

Here n is the outward normal to the surface and s is a point
on the surface.

2 Driver characterisation
Salava [3] has described how acoustic transfer

impedances can be measured in practice. A sensing

Figure 1: Microphone fixed inside of the driver enclosure.

transducer proportional to volume velocity is needed. If
one assumes that the volume of air inside of the driver’s
back cavity is tightly closed and if its enclosure is small and
rigid, the compression and expansion of the air will make
the pressure p inside the enclosure become proportional
to volume velocity Q of the driver p ∝ Q. Anthony and
Elliott have compared two concepts of implementing known
volume velocity sources: an implementation of Salava’s
source using two identical drivers put together and an
implementation using an internal pressure microphone in
the driver enclosure [4]. They used laser velocimetry as a
reference measurement of volume velocity.

In this study a known volume velocity source was
implemented using a commodity driver and a pressure
microphone embedded in the driver’s enclosure. The
properties of the driver enclosure being unknown, the
proportionality between internal pressure and volume
velocity had to be obtained experimentally. The modified
driver is shown in Figure 1.
Using internal pressure as a reference of volume velocity
the transfer impedance in Equation 1 can be split into two
frequency response functions; a so called source function Ψ
which relates internal pressure p(i) to volume velocity Q and
a room function Ω which relates external pressure p(f) to
internal pressure p(i). The transfer impedance is

Z(f|s) =
p(i)
Q(s)

p(f)
p(i)
= ΨΩ. (3)

The centre of the internal microphone is denoted by i. The
source function is measured in a space where the volume
velocity can be assessed:

1. in a small, front-added, compression chamber
assuming an adiabatic process,

2. in a room assuming a rigid diaphragm,
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3. in a room assuming a known transfer impedance,

4. inside of a pipe assuming plane waves.

2.1 Assuming an adiabatic process inside of a
compression chamber

Consider a volume of an ideal gas inside of a chamber
enclosed by an impenetrable surface. Let the volume at rest
Vs be compressed and expanded by an oscillating source
which constitutes one part of the enclosing surface. Inside
of the chamber density and pressure are related by(

p
ps

)
=

(
ρ

ρs

)γ
, (4)

where the total pressure p = ps + pe is given by the sum of
acoustic pressure pe and static pressure ps [1]. The density
is denoted by ρ, the density at rest ρs and the ratio of specific
heats is denoted by γ. The mass inside the chamber is
conserved. The volume velocity is related to the change of
volume ∆V = V − Vs by Q = ∂

∂t∆V . If the excess pressure
inside of the chamber is considered much smaller than the
equilibrium pressure the volume velocity is:

Q = − jω
Vs

γps
pe. (5)

The sound pressure is proportional to volume velocity inside
of the compression chamber. The imaginary unit is denoted
j. The speed of sound in an ideal gas is c2 = γ ps

ρs
[5].

Substituting γps with ρsc2 yields the result of Anthony and
Elliot [4]. The source function is

Ψ̃ = −
1
jω
γps

Vs

pref

pe
. (6)

The pressure inside of the back enclosure is denoted pref. It
is assumed that the ratio of specific heats γ is 1.4 and the
equilibrium pressure ps is 101.3 kPa. Apart from the sound
pressure, the volume at rest Vs has to be measured. The upper
frequency limit of the technique is reached when the size of
the chamber approaches half the wavelength which causes
the pressure to be unevenly spatially distributed.

2.2 Assuming a rigid diaphragm
Let the driver be flush-mounted in a flat baffle with its

rigid diaphragm oscillating perpendicularly to the baffle. The
vibrating surface projected onto the baffle corresponds to a
circle of radius a. The volume velocity is

Q = πa2v, (7)

and the source function can be estimated from

Ψ̃ =
1
πa2

pref

v
(8)

using a laser doppler vibrometer [4]. If the diaphragm is
a convex dome it becomes difficult to measure the normal
velocity at multiple points. The velocity was measured
in the middle of the diaphragm. Such a point estimate is
questionable; the vibration of a dome shaped diaphragm is
complex in nature. The vibration of different zones of the
diaphragm might be of different amplitudes, and once the
surface breaks up they might be of opposite phase. Even

Figure 2: Setup using laser velocimetry when the driver is
set in a closed-box baffle.

below the breakup frequency the velocity at the rim is far
lower than at the centre of the diaphragm. The measurement
using laser velocimetry required further modifications of the
driver. The diaphragm was found to be non optical reflective,
and the pickup point had to be treated with a small piece of
optical reflective tape. A prior measurement with reflective
spray failed. The setup is shown in Figure 2.

2.3 Assuming a transfer impedance
The volume velocity can be estimated from pressure

measurements in an environment where the transfer
impedance is known. A single pressure response is sufficient
to deduce the volume velocity. Considering measurement
incertitude and modelling simplifications, measuring the
response in several positions using either an array of
microphones or a series of measurements by a single
microphone may result in a more robust estimate. Let the
measurements be done in N positions. For each frequency of
interest one has

ZQ = p, (9)

where the scalar volume velocity Q has to be fitted to the
measured data by a least squares approach. The column
vector of transfer impedances is denoted Z and the column
vector of pressure response by p. The volume velocity is
Q = Z+p, where the superscript + denotes a pseudo-inverse.
Introducing internal pressure on both sides, the source
function is

Ψ̃ =
1

Z+y
, (10)

where y is the column vector of response terms and each term
is y = p

pref
.

Choice of transfer impedance Measurements were done
in an anechoic room using a finite sized flat rectangular
baffle. Measurements directly in a free space would have
been possible, but the back enclosure of the compression
driver vibrates and radiates unwanted sound. It was
considered that the sound radiation from the diaphragm and
from the back enclosure can be separated by the use of a
baffle. An approximation of the setup would be a rigid piston
set in an infinite baffle. The pressure amplitude along the
axis z for a unit volume velocity is [1]:

Z = −
ρc
πa2

(
e− jk

√
z2+a2
− e− jkz

)
. (11)

This model does not account for specific features of the real
space e.g. the convex dome shaped diaphragm or diffraction
from the finite sized baffle. Ultimately, acoustic transfer
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Figure 3: Setup in an anechoic room using a rectangular
baffle.

impedances accounting for additional phenomena can be
found by numerical simulation. However, the radiation
characterisation assumes that the driver can be approximated
by a simple source, at least in the far-field, and therefore one
can continue and exploit simple analytical results to deduce
the volume velocity. The setup is shown in Figure 3.

2.4 Assuming travelling plane waves in a pipe
Sound propagating in a cylinder of air with a radius a

and length l inside of a rigid pipe can be idealised as forth
and back traveling plane waves [1]. The pressure fluctuation
inside the pipe is caused by the driver at the termination x = l.
The pressure amplitude at a cross-section x (0 ≤ x ≤ l) is

p = A+e− jkx + A−e jkx, (12)

and the particle velocity amplitude is

u =
1
ρc

(
A+e− jkx − A−e jkx

)
. (13)

The subscript + denotes forth going waves, in the direction
of the x-axis and taken to be towards the piston, and − back
going waves, in the opposite direction. For a circular duct
of radius a, the plane wave assumption is valid away from
discontinuities, at frequencies satisfying ka < 1.8 which is
the cutoff value of higher propagation modes [5].

2.4.1 Wave separation

If the driver is modeled as a rigid piston fitting snuggly
into the pipe, the velocity has to be continuous v = u at the
interface between the surface of the piston and the air inside
of the chamber. It follows that the volume velocity is

Q = −πa2u
∣∣∣∣∣
x=l
. (14)

The unknown particle velocity amplitude cannot be
measured at the interface of the piston. An approach is
to estimate the wave amplitudes A+, A− from the pressure
response inside of the pipe. The separation requires two
simultaneous pressures to be measured. The estimate of
wave amplitudes might be more robust if an array of more
than two microphones are used. Assuming that the pressures
in x1, x2, . . . , and xN are known one has

e− jkx1 e jkx1

e− jkx2 e jkx2

...
...

e− jkxN e jkxN


[
A+
A−

]
=


p1
p2
...

pN

 (15)

which can be written as TA = p. The equation can be scaled
by one over the reference pressure inside the enclosure. In
this case is the source term given by

Ψ̃ = −
ρc
πa2

1
A+e− jkl − A−e jkl (16)

where the wave amplitudes are estimated for a unit pressure
inside of the driver enclosure.

2.4.2 Blocked pressure

Let the pipe termination at x = 0 be sealed by a rigid
surface with a flush mounted microphone embedded in it.
The driver remains at x = l and the assumption of a flat
circular rigid piston fitting snuggly into the pipe is not made.
The overtones of a closed pipe are given by fn = n f0 = n c

2l
where n is a positive integer. At frequencies equal to fn−0.5 =

(n − 0.5) f0, at the antiresonances, the complex relationship
between volume velocity Q at the speaker and the blocked
pressure pb at the termination is simplified to

Q = j(−1)n−1 πa
2

ρc
pb. (17)

The source term for a blocked pressure is then given by

Ψ̃( fn−0.5) = − j(−1)−n+1 ρc
πa2

pref

pb
. (18)

2.5 Comparison of source functions
A small volume inside of a rigid enclosure, the driver’s

back cavity, can be understood as an acoustic filter [1].
Since the distance between the internal microphone and the
diaphragm is small compared to the wavelength, ‖i− s‖ � λ,
the pressure at the acoustic centre of the driver is p(s) ≈ p(i).
The source function takes the form of an acoustic impedance

Ψ =
p(s)
Q(s)

= R + jX. (19)

The estimated source function contains noise. To
reduce noise the measured source function Ψ̃ was fitted to a
polynomial

jωΨ̂ = ξ0 + ξ1( jω)1 + ξ2( jω)2 + . . . , (20)

using a least squares approach. A second order polynomial
was fitted in the frequency range 100 Hz to 1000 Hz.
The polynomial model was then used to obtain transfer
impedances. The fitting technique is useful when using
blocked pressure in a pipe, which only estimates volume
velocity at a few frequencies. Estimated source functions are
shown in Figure 7.

Results are not shown for wave separation based on two
microphones: it is the only one technique out of the five
discussed that was found not suitable. The separation is
sensitive to the exact position of the source plane, which is
uncertain in view of the dome shape of the diaphragm. The
assumption of a rigid piston fitting snuggly into the pipe is
also questionable in itself.

A fair comparison between the estimation techniques
would require that the experiments were done in a controlled
environment. However, the series of experiments were done
using different equipment, at different times, and in different
geographical locations. E.g. the measurement in an anechoic
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(a)

(b)

Figure 4: Estimated (a) real part and (b) imaginary part of
the source function, legend: c.c. compression chamber, l.v.

laser velocimetry, a.c. anechoic chamber, b.p.p. blocked
pressure in a pipe

room was done in Sweden whereas the measurement using
blocked pressure in a pipe was done about one year after the
other ones.

Despite mentioned inconveniences, the measurements
tend to agree in the imaginary part of the source function.
The frequency behaviour of the imaginary part is dominated
by a compliance law. However, the transformation to a
lumped element filter is not straightforward. The real part
which should have theoretically been zero is frequency
dependent, and disperses more between the measurements.
The deviation from zero real part may be a consequence
of damping treatments inside of the driver enclosure. The
behaviour of real part should be studied in more depth.

3 Radiation model
Let the radiating object be a box of dimensions l1, l2

and l3. The geometric centre x coincides with the origin of
coordinates, thus x = (0, 0, 0)t, and the coordinate system is
aligned with the edges of the box. On the otherwise passive
surface S is placed at one face a vibrating disk of radius a
centred in a point s. It is assumed that the sound pressure
is of small amplitude, that the vibration is sinusoidal in
time, and that sound propagation takes place in a loss-less
homogeneous medium. Pressure amplitude pm and radial
particle velocity amplitude um at a reception point f due to a
simple source at a point m are given by

pm = jkρc
Qm

4π
e− jkr

r
, um =

Qm

4π
(1 + jkr)

e− jkr

r2 , (21)

where Qm is the volume velocity and the subscript m denotes
a simple source [1]. It is assumed that the speed of sound
c is 343 m·s−1 and the density of air ρ is 1.2 kg·m−3. The
wavenumber is given by k = 2π/λwhere λ is the wavelength.
The distance between source and reception points is denoted
by r =‖ r ‖ where r = f − m. Assuming that the box
has a rigid surface, the particle velocity field created by the
substitute sources u has to reproduce the normal component
of surface vibration v of the original source [5]. This is the
basic assumption of the synthesis, which together with the
Helmholtz equation enables the computation of sound [6–8].

Substitute sources are found by a greedy search
algorithm [7] where the best simple source positions are
selected from a group of K prescribed positions located
at candidate points m1, . . ., mK inside of the enclosing
surface. The best fit corresponds to the candidates producing
the sound field which most closely matches the prescribed
velocity at the control points on the body. The search of
substitute sources is done by iteration where a new source is
selected in each step.

The normal velocity is represented by a vector v⊥ (Nx1),
where each element is given by v⊥ = v · n, prescribed at
control points b1, . . ., bN on the enclosing surface. The
subscript ⊥ indicates motion perpendicular to the surface. In
order to find the volume velocity distribution Q (Mx1) which
gives the best matching at the end of the Mth iteration step
all selected substitute sources are tuned to best reproduce
the prescribed normal velocity. This is done by finding the
solution to

TQ = v⊥ (22)

by a least squares approach. Each element in the transfer
matrix T (NxM) corresponds to the outward pointing normal
component of particle velocity at bn contributed by a simple
source of a unit volume velocity at mm. An element of T
reads:

Tnm =
1

4π
(1 + jkrnm)

e− jkrnm

r2
nm

cos γnm. (23)

The radius vector is given by rnm = bn − mm and γnm is the
angle between the normal vector nn and the radius vector.
The residual vector ∆u⊥ = u⊥ − v⊥ is the difference between
prescribed and obtained u⊥ = TT+v⊥ normal component
of velocity. The superscript + denotes a pseudo-inverse.
A velocity error is defined from the residual vector as a
normalised r.m.s. value of the form

eu =

√
∆u∗⊥∆u⊥

v∗⊥v⊥
. (24)

The asterisk denotes a conjugate transpose. Once suitable
positions of a group of M simple sources and their volume
velocities are known the sound pressure amplitude at any
reception point f can be obtained by

p(f) =
M∑

m=1

jkρc
Qm

4π
e− jkrm

rm
(25)
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Figure 5: Control points and candidate source positions.

where the radius vector is rm = f−mm. The described method
uses a discrete representation of the box, and prescribed and
reconstructed normal velocities are defined in control points
across the enclosing surface. A discrete model of a box is
shown in Figure 5.

3.1 Boundary value on driver
A simple source is characterised by the volume velocity

it produces. Volume velocity of a driver is obtained by
integration of normal component of velocity over its entire
vibrating surface D [1]:

Q(s) =
∫

D
v · n dD. (26)

Let the vibrating surface be a circle of radius a in radially
symmetric motion. The velocity profile on the disk is v · n =
ζ(σ) and depends only on the distance σ from a point b on
the disk to the center of the disk at s, σ = b − s. Greenspan
considered profiles on the form

ζ(σ) =
1
πa2 (n + 1)

(
1 −
σ2

a2

)n

H(a − σ), (27)

which produce unit volume velocity [9]. The Heaviside step
function is denoted by H. The profile order n is an integer.
The zeroth order corresponds to a uniform profile ζ(σ) =
α where the velocity constant is α = 1

πa2 . The first order
corresponds to the simplest case of a simply supported disk
and the second order to the simplest case of a clamped-edge
disk [10].

3.2 Boundary value on cabinet
Motion of a real driver can cause vibration on the cabinet

which in turn will radiate sound. This phenomenon is
neglected. The cabinet is assumed to act only as an obstacle
on the propagating sound. The normal velocity and pressure
are continuous at an interface between an ideal fluid without
viscosity and a body and for a rigid surface the normal
velocity should vanish v · n = 0 [5].

3.3 Boundary value on the floor
If the floor is assumed to be an infinite rigid plane

such that the normal component of velocity vanishes
v · n = 0, then the reflection can be taken into account by
considering the floor as an acoustic mirror [5]: the original
boundary problem is replaced by one with the original
box and its image in an infinite space. Let the box be

Figure 6: Setup in a non-ideal semi-anechoic room.

suspended at a height h ≥ 0 such that its centre is given by
x = (0, 0, h+0.5l3). Furthermore let the origin of coordinates
lay on the floor. An image source is obtained if all points
(b1, b2, b3)t on the surface of the original source are mirrored
such that corresponding points are given by (b1, b2,−b3)t. In
the same manner the prescribed velocity at a point on the
original surface (v1, v2, v3)t is changed on the mirror surface
to (v1, v2,−v3)t.

4 Transfer impedance
Measurements were done in an engine test cell at INSA

de Lyon. The room is not an ideal semi-anechoic room. It
contains multiple objects, such as engines and brakes, and
ventilation installation which affects its performance. All
frequencies below 100 Hz are omitted because the sound
pressure level was too low with respect to the background
noise. All frequencies above 1000 Hz are rejected because
the driver is too large to act as a simple source. The setup is
shown in Figure 6.

The driver was mounted at (10, -116, 100) mm as seen
from the centre of the box. The box of dimensions 300
× 232 × 500 mm was suspended at a height of 200 mm
above the floor. A transfer impedance taken 165 mm away
on the axis of the driver is shown in Figure 7. Below 500
Hz the difference between the measured and computed sound
pressure level is less than 1.5 dB, and the measured transfer
impedance fluctuates around the predicted value. Around
800 Hz and 1000 Hz there are dips where the difference in
level is about 5 dB, believed to come from the imperfect
room.

Measured transfer impedances are uncertain. The
uncertainty cannot be quantified easily since the true volume
velocity is not easy to measure. Despite shortcomings
measured and computed transfer impedances look similar.

5 Conclusions
To measure acoustic transfer impedances of a small

driver, acting as a simple source, its volume velocity has
to be known. Using a pressure microphone embedded
in the driver the transfer impedance can be split into a
source function and a room function. The source function
relates internal pressure in the driver enclosure to volume
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(a)

(b)

Figure 7: Transfer impedances on the axis of the driver (a)
magnitude and (b) phase, legend: c.c. compression

chamber, l.v. laser velocimetry, a.c. anechoic chamber,
b.p.p. blocked pressure in a pipe.

velocity. Five techniques to estimate the source function
were considered, these were: a small compression chamber,
laser velocimetry, response in an anechoic room, pipe wave
separation, and pipe antiresonance technique.

The use of a compression chamber or a blocked pressure
in a pipe are recommended being insensitive to the shape of
the driver’s vibrating surface. The latter gives results only
at discrete frequencies thus needing interpolation. The pipe
wave separation or laser velocimetry assumes the membrane
to be a rigid surface which contradicts reality. Data obtained
in an anechoic room using a flat baffle were more noisy than
the data obtained by other techniques.

The imaginary part of the measured source function
follows a compliance law, and similar results were obtained
using the different estimation techniques. The real part
of the source function, theoretically equal to zero, was
found to be more uncertain. Despite the uncertainty, a
small commodity driver can be used for measuring acoustic
transfer impedances.

The final validation of the prediction of sound radiation
using the driver’s impedance, obtained by different
characterisation methods, was done by modelling the sound
created by a rigid box with the driver mounted in it. In spite
of inevitable differences between the predicted and measured
sound pressure, the matching between the two was found to
be fairly consistent. The small driver was found to be suited
for the measurement of acoustical transfer functions.
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