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M. Farina, A. Mangeneya, R. Toussaintb, J. De Rosnyc et N. Shapiroa
aInstitut de Physique du Globe de Paris, 1, rue Jussieu, 75238 Paris Cedex 05, France

bEOST IPGS, 5, rue Descartes, 67000 Strasbourg, France
cInstitut LANGEVIN, ESPCI-CNRS 7587, 1 rue Jussieu, 75231 Paris, France

farin@ipgp.fr

CFA 2014 Poitiers 22-25 Avril 2014, Poitiers

1617



Three complementary methods are presented to estimate the energy of elastic waves generated by the impact of a

small object onto a thin plate. The first two methods are based on the analysis of the direct arrival. To separate this

path with the reflected ones, the plate has to be sufficiently large. In contrast, the last method is well adapted for

a rather small and weakly dissipative plate where the elastic field reaches a diffuse regime. These three methods

have been experimentally validated with steel beads onto a glass plate. We show that all of them provides a correct

estimation of the energy. These methods are well adapted for an in depth study of the elastic and inelastic energy

transfer when an object bounces off a surface.

1 Introduction

When a small object bounces off a surface, a force

localized in time and space acts onto the interface and

an elastic wave is radiated outward from the point of

application [e.g. Lamb, 1904]. The quantification of the total

energy transmitted to the structure is an important problem

in various fields such as vibroacoustics and shielding.

Numerous laboratory experiments have been conducted

to better understand the energy transfer processes that

are involved during an impact. In case of simple normal

impact, the coefficient of restitution which is the ratio of

the energy after and before the impact can be precisely

estimated from the rebound height [e.g. Hunter, 1957 ;

Falcon et al., 1998 ; McLaskey and Glaser, 2010]. The

energy that is lost is due to three main processes : elastic

radiation into the structure, plastic deformation of the bead

and the local viscoelastic dissipation around the contact

[Falcon et al., 1998]. Viscoelastic dissipation is inherent

to the bead and structure material [Falcon et al., 1998]

and plastic deformation is significant when the bead initial

momentum is greater than a threshold value [Davies, 1949].

The interaction process between the impactor and the surface

is very complex because it depends on numerous parameters

(velocities, roughness, materials, ...). It is important to

estimate the part of the energy that is transferred in the form

of elastic waves independently of the two other processes

because it represents the acoustic signature of the impact.

This elastic energy W is the time integral of the

instantaneous power transmitted to the structure, i.e., the

scalar product of the instantaneous values of the force

F(r0, t) and surface vibration velocity v(r0, t) at the position

of force application r0 [e.g., Royer and Dieulesaint, 2000] :

W =

∫

+∞

−∞
F(r0, t).v(r0, t)dt. (1)

Hunter [1957] thus estimated the elastic energy W radiated

in a semi-infinite elastic block using a force expression

derived from Hertz’s theory [see Johnson, 1985] and

predicted that the elastic energy W in these conditions is

smaller than 5% of the impactor cinematic energy. Hutchings

[1979] extended Hunter’s [1957] calculation to the case

of plastic (inelastic) impacts of spherical beads on thick

blocks using an asymmetric profile for the impact force and

reported elastic energy losses of a few percent of 1
2
mv2

impact
.

Hunter’s [1957] study is based on a force modeled by

Hertz’s theory of elastic impact. However, this assumption

is not always verified for complex impact geometry (e.g., in

seismology or impact science). This is why, in this paper, we

estimate the elastic energy transmitted into a structure using

the generated vibration, measured at a given location of the

surface, without an a priori knowledge of the impact force.

We introduce three different methods to estimate the

elastic energy produced in a thin plate. The two first methods

require that the plate is so large that the direct wave between

the source and the sensor can be clearly separated from its

reflections on the structure borders. In contrast, the third

method is based on a diffuse field assumption.

2 Elastic energy estimation in a thin

plate

A force F(t) = −Fzuz is applied normally at a given

position (x, y, 0) over the surface (z = 0) of a plate (Figure

1). The emitted elastic wave propagates radially from the

source location (direction ur, Figure 1). Because only thin

plates are considered, the fundamental antisymmetric mode

is mainly excited (A0 of Lamb) [e.g. Royer and Dieulesaint,

2000]. This implies that the vibration is mainly normal to

the plate surface (direction uz, Figure 1) and is constant

within the plate thickness [Royer and Dieulesaint, 2000].

In the following, the radial displacement ur(r, t) is therefore

assumed negligible and only the normal displacement uz(r, t)

is considered.

Figure 1 – Scheme of the plate of thickness h, characterized

by the Cartesian coordinates x, y, z. Coordinate z = 0

corresponds to the free surface of the plate. When a transient

normal force −Fzuz excites the plate at the origin (0, 0, 0),

A0 Lamb wave is emitted radially and generates a mainly

normal displacement field uz. Surface S is a cylinder of

radius r and thickness h that surrounds the impact position.

Mode A0 is highly dispersive at low frequency, when the

wavelength is much larger than the plate thickness h. In the

limit kh << 1 (where k is the wave number), the approximate

relation of dispersion is :

ω =
vp

2
√

3
k2h. (2)

The plate velocity vp is defined by vp =

√

E/(ρ(1 − ν2)),

where ρ, E and ν are the density, Young’s modulus and

Poisson’s ratio of the plate constitutive material, respectively.

We can easily show that the group velocity vg is given by

vg(ω) =
vp√

3
kh. (3)

In contrast, at higher frequencies, when the wavelength

becomes smaller than the plate thickness (i.e, kh > 1), the

CFA 2014 Poitiers22-25 Avril 2014, Poitiers

1618



relation (2) is not valid anymore and the group velocity vg of

A0 mode tends towards the frequency independent Rayleigh

waves speed [Royer and Dieulesaint, 2000].

2.1 Energy flux method

The first method to estimate the elastic energy is based on

the energy flux conservation. Indeed, one can show that the

power P̃(ω) at pulsation ω that goes across section S is equal

to the energy density flux [Royer and Dieulesaint, 2000] :

P̃(ω) = vg(ω)

"
S

ρ|Ṽz(r, ω)|2dS (4)

According to the Parceval theorem, the elastic energy W

radiated within the plate (equation (1) is equivalent to the

integral of P̃(ω) over the pulsations ω over 2π :

W =
1

2π

∫

+∞

−∞

[

vg(ω)

"
S

ρ|Ṽz(r, ω)|2rdθdz

]

dω. (5)

Because of the radial symmetry, the radiated elastic energy is

then simply given by :

W =

∫

+∞

0

2rhρvg(ω)|Ṽz(r, ω)|2 exp(γ(ω)r)dω, (6)

Here we have added a factor exp(−γ(ω)r) to compensate

the viscoelastic dissipation of energy with distance r. This

correction is valid when the dissipation length γ(ω)−1 is

large compared to the wavelength.

2.2 Deconvolution method

Contrary to the energy flux method, here we compute the

energy from the estimation of the time dependence of the

force of the impact F and the normal displacement. Indeed,

when the emitted waves train is not reflected on the plate

lateral sides, the power P̃(ω) transferred into a plate at the

point of application of a normal force F̃z(ω) is [Goyder and

White, 1980] :

P̃(ω) =
|F̃z(ω)|2

8
√

Bρh
(7)

where ρ and h are respectively the plate density and thickness

and B is the bending stiffness, given by B = h3E/(12(1− ν2))

with E and ν, the plate elastic parameters. The total energy is

then :

W =
1

8π
√

Bρh

∫

+∞

0

|F̃z(ω)|2dω. (8)

The normal force F̃z(ω) at the impact location can be

deduced from the deconvolution of Ũz(r, ω) = F̃z(ω)G̃zz(r, ω)

[Aki and Richards, 1980] where Ũz(r, ω) is the measured

normal displacement and G̃zz(r, ω) is the vertical-vertical

Green’s function. For calculations, we used the far field

asymptotic expression of G̃zz(r, ω) [e.g. Goyder and White,

1980], which is valid for distances greater than half a

wavelength from the excitation source [Noiseux, 1970] :

|G̃zz(r, ω)| = 1

8Bk2

√

2

πkr
exp

(

−γ(ω)

2
r

)

, (9)

where k = vφ/ω is the wave number with vφ the phase

velocity.

2.3 Diffuse method

This technique is derived from classical methods used

in room acoustics [see e.g. Weaver, 1985 and references

therein]. When the emitted wave is reflected off the

boundaries many times, the elastic field become diffuse,

i.e., the wave becomes homogeneously distributed over the

plate and equipartioned. When the field is equipartioned, the

potential and kinetic energy are equal and the total energy

E(t) verifies at a given time t :

E(t) = h

"
S

ρvz(r, t)
2d2r, (10)

where vz(r, t) is the normal surface vibration speed.

Moreover, because the field is diffuse, the average value

(over several periods) of the squared field vz(r, t)
2 is constant

over the plate surface :

E(t) ≈ hS ρvz(t)2. (11)

When the field is diffuse, the energy decreases exponentially

with time due to dissipation :

E(t) ≈ hS ρvz(t0)2 exp(−(t − t0)/τ), (12)

where t0 is the impact time and τ is the attenuation time. This

time equals (γvg)−1. Thus, from the exponential decrease of

the squared normal vibration speed, we can estimate the total

elastic energy produced by the impact at time t0 :

W = E(t0) ≈ ρhS vz(t0)2, (13)

3 Experimental results

3.1 Experimental setup

We have compared the three methods of energy

estimation with steel bead impacts onto a thin glass plate.

Piezoelectric charge shock accelerometers (type 4374 and

8309, Brüel & Kjaer) record the vibrations generated by

impacts at various positions. The accelerometers type 4374

and 8309 have an uniform response over a wide range of

frequencies from 1 Hz to 26 kHz and to 54 kHz, respectively,

and resonate for 85 kHz and 180 kHz, respectively. The

normal acceleration is digitalized with an acquisition rate of

0.3 MHz. The beads are made of steel (density 7800 kg m−3)

and their diameter ranges from 1 mm to 20 mm. The beads

are dropped from various heights from 2 cm to 25 cm on a

circular glass plate of radius 40 cm and thickness 9 mm. The

elastic parameter of the glass plate are represented in Table

1.

For all the methods, we assume that the plate vibration

is mostly normal to the surface. To check this hypothesis,

we measure the radial vibration with an accelerometer on

the plate border and compare it with the normal vibration

measured by an other accelerometer on the plate surface

and close to the first one. Figure 2 shows that the energy

transported in the radial direction, that is proportional to

the integral of the squared signal
∫

|ar(t)|2dt, is negligible

because it is only about 0.2% of that on the normal direction
∫

|az(t)|2dt. Interestingly, the energy radiated in the plate

does not seem to depend on the angle of impact up to 20◦

and then decreases very slightly (Figure 2).
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Table 1 – Elastic parameters of glass material used in experiments : density ρ, Young’s modulus E, Poisson ratio ν. The

characteristic distance 1/γ and time τ of energy attenuation and group velocity vg, that depend on the frequency f (in Hz) is

estimated for the 9mm-thick plate

kh ρ E ν 1/γ τ vg

- (kg m−3) (GPa) - (m) (s) (m s−1)

< 1
2500 83 0.2 ∼ 15

0.8 f −1/2 18.7 f 1/2

> 1 ∼ 0.0048 ∼ 3100

glass plate

∫| az(t) |
2 dt
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Figure 2 – A steel bead of diameter 4 mm is dropped from

height 10 cm onto the surface of the glass plate. The time

integral of the squared vibration acceleration on the

direction normal to the plate surface
∫

|az(t)|2dt (×) and on

the radial direction
∫

|ar(t)|2dt (+) are represented for

different angles of impact of the bead with respect to the

vertical. The horizontal black lines represents the mean

values of
∫

|az(t)|2dt and
∫

|ar(t)|2dt for impact angles

smaller than 20◦ with respect to the vertical, that are

respectively 132 m s−1 and 0.29 m s−1.

In order to test simultaneously the three methods of

energy calculation, we also have constraints on the plate

size and elastic parameters. On one hand, the characteristic

distance 1/γ of energy attenuation in the plate has to be

significantly greater than the plate largest dimension L. This

is verified for glass for which 1/γ ≃ 15 m ≃ 17.5L (Table

1). Practically, for the two first methods, we can neglect

attenuation for the direct path. Therefore, a large number

of wave reflections occurs before the extinction of the coda

(Figure 3a). After about 30 side reflections, the averaged

squared vibration amplitude decreases exponentially with

time, as expected (Figure 3b). We could thus estimate the

characteristic time of energy attenuation τ and we verify

that τ(ω) = (γ(ω)vg(ω))−1 for every frequency ω. Time τ

depends on frequency as ∼ 0.8 f −1/2 in the frequency range

considered (Table 1). On the other hand, the plate has to be

sufficiently large so that the direct wave between the impact

and the probe locations can be measured entirely before the

return of the first reflections (Figure 3c).

Impacts of beads excite a wide frequency range from

1 Hz to about 80 kHz and are characterized by a peak of

energy whose central frequency vary from 30 kHz to 40 kHz

depending on the bead diameter (Figure 3d).

3.2 Results

The energy flux and deconvolution methods to estimate

the elastic energy W from the first wave arrival (equations
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Figure 3 – (a)-(c) Trace of the normal acceleration az(r, t)

recorded at r = 6 cm from the impact of a 4mm-diameter

steel bead onto the glass plate. (a) The acceleration with

respect with time. The envelop of the acceleration is plotted

in semilog scale. (c) Focus on the direct arrival (The first 0.2

ms). (d) Fourier transform of the first wave arrival.

(6) and (8)) give almost identical results. These results are

also in good agreement with the energy estimated from the

diffuse method. The error bars are ±1 standard deviation

of the dispersion from reproducibility tests conducted on a

series of 20 experiments and are about 37% with the first

method, 36% with the second and 52% with the third.

We measure the total energy lost by the beads ∆Ep

from their coefficient of restitution e [e.g. Hunter, 1957 ;

McLaskey and Glaser, 2010]. The proportion of energy

radiated in elastic waves W with respect to ∆Ep, i.e., the

elastic transfer efficiency, depends on the bead diameter

(Figure 5). The elastic transfer efficiency is maximum for

beads of diameter 4 to 5 mm for which nearly all the energy

lost ∆Ep is converted in elastic energy W.
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(a)

(b)

Figure 4 – Comparison of the elastic energy W calculated

using the three methods (equations (6), (8) and (13)) for

impacts of steel beads of various diameters from 1 to 20 mm

dropped from various heights from 2 to 25 cm onto the glass

plate. Error bars are ±1 standard deviation of the dispersion

from reproducibility tests conducted on a series of 20

experiments.

4 Discussion

4.1 Discussion of the experimental results

Let us first discuss the possible source of errors in

our experiments. To estimate the normal force generated

at the impact for the deconvolution method, one have to

deconvolve the measured signal from the Green’s function.

The problem of deconvolution is known to be very difficult

[e.g. McLaskey and Glaser, 2010]. Classically, it consists

in dividing, in the frequency domain, the amplitude of the

vibration by the Green’s function. However, the inverse

Green’s function diverges when ω tends towards 0 (equation

(9)). Consequently, in practice we cannot deconvolve the

signal and therefore estimate the energy below a cutoff

frequency. To quantify the error due to this cutoff, we

calculate the acceleration due to an ideal Hertzian force

[e.g. Johnson, 1985] (Figure 6). We find out that when the

low frequency cut-off equals 3 kHz, the estimated energy is

less than 5% smaller than the exact elastic energy for every

bead diameters investigated (Figure 6c). The result of the

deconvolution of a signal measured on the glass plate with

the Green’s function in far field (Figure 6b) shows that the

temporal profile of the obtained impact force onto a glass is

similar to that of a Hertzian force (Figure 6d), in agreement

with previous experimental studies [e.g. McLaskey and

Glaser, 2010]. The small precursor in the force profile may

arise from the viscoelasticity of the contact [McLaskey and

W
 /
 Δ
E
p
 (

%
)

1

10

100

Bead diameter (mm)

1 10

Figure 5 – Ratio of the energy W radiated in elastic waves

over the total energy lost during an impact ∆Ep, i.e. elastic

transfer efficiency, as a function of the bead diameter for the

experiments on the glass plate. Error bars are ±1 standard

deviation of the dispersion from reproducibility tests

conducted on a series of 5 experiments.

Glaser, 2010].

The error bars of the diffuse method are greater than

for the two first methods (Figure 4b) because it is based on

statistical assumptions that induce extra-fluctuations.

The radiated elastic energy W do not seems to be affected

when the impact force is not normal to the surface, at least

up to an angle of impact of about 20◦ with respect to the

vertical (Figure 2). This result implies that the mode A0 of

Lamb remain the main mode excited even if the impact force

is not normal to the plate.

We observe that even when the elastic transfer efficiency

is low (for bead diameter smaller than 3 mm and greater

than 10 mm, see Figure 5), the presence of strong inelastic

dissipation does not affect our estimation of the elastic energy

radiated because the three methods of calculation give very

similar results, regardless of the bead size (Figure 4a and 4b).

4.2 Limits of applicability of the methods

The energy flux and deconvolution methods are well

adapted to estimate the elastic energy when the side

reflexions are very attenuated or the bandwidth is sufficiently

large that the first wave arrival can be discerned from side

reflections. When this last assumption is not fullfilled and

the number of reflections is large enough, the diffusive

method becomes very efficient. Another interest of this last

approach is that there is no assumption on the impact, such

as isotropy. Finally, the choice of one or the other method

depends on how much well we know the characteristics

of the investigated structure and on the number of sensors

available. The first two methods require to know the elastic

parameters, the waves speeds and the attenuation coefficient

within the impacted structure before any calculation of the

elastic energy (equations (6) and (8)). If one can not have

access to those characteristics, the third method should be

preferred because only the structure density and dimensions

and the instant t0 of the source are sufficient (equation (13)).

Note that the three methods are efficient with only sensor to

measure the elastic energy with all of the presented methods.

The precision of the energy estimation can be enhanced

when several sensors are used. For the direct path methods, it

can take into account an anisotropic emission. For the diffuse
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Figure 6 – (a) Fourier transform |F̃(ω)| of the ideal Hertz

force of elastic impact of a steel sphere of diameter 5 mm on

glass. This force is multiplied by (b) the second derivative of

the Green’s function at r = 10 cm from the force location

|G̃zz(r, ω)| (equation (9)) to obtain (c) the analytic time

Fourier transform of the normal vibration acceleration

|Ãz(r, ω)| generated by the impact. Practically, we discard

frequencies below 3 kHz (red line) to deconvolve the signal

with the Green’s function (see text). (d) shows the result of

the deconvolution of the measured acceleration vibration

generated by the impact of a steel bead of diameter 5 mm on

the glass plate, i.e. the impact force Fz(t) (full line) and the

theoretical Hertz force of elastic impact (dashed line). The

two forces are similar with the exception of a small

precursor in the measured force.

method, it can compensate a not completely equipartioned

field.

5 Conclusion

An object impacting a surface creates a force localized

in time and space onto the structure. This time dependent

force generates a wave within the elastic material. We have

presented three methods to estimate the energy transferred

into a thin elastic plate from the measurement of the surface

normal vibration at a single position. The energy flux and

deconvolution methods use the direct wave between the

impact and the sensor while the third method take benefit of

the diffuse coda when multiple reflections occur. The three

methods have been validated experimentally with drop tests

of steel beads of different diameters onto a glass plate. They

give close results, even when the impact is strongly inelastic.
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