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Seismic imaging by full waveform inversion (FWI) aims to estimate some physical properties of the subsurface

from elastic waves recorded near the surface of the earth. Under certain experimental setup and geological

environments, the subsurface can be considered to the first order as a visco-acoustic medium in which it might

be necessary to account for anisotropic effects. Starting from the elastodynamic equations for vertical transversely

isotropic (VTI) media in which we set the shear wavespeed on the symmetry axis to zero, a visco-acoustic

wave equation for VTI media is discretized in the frequency-space domain with a finite-difference method. The

corresponding numerical problem is the resolution of a system of linear equations, the solution of which is the

monochromatic pressure wavefield and the right-hand side term is the seismic source. The coefficients of the so-

called impedance matrix, which relates the pressure wavefield to the source, depend on frequency and subsurface

properties that we seek to reconstruct by waveform inversion. The finite-difference stencil is specifically designed

to solve this system with sparse direct solvers, which allow for the efficient computing of solutions for multiple

right-hand sides one the impedance matrix was LU factorized. The anisotropic finite-different stencil does not

lead to extra computational cost relative to the isotropic counterpart. The accuracy of the stencil is first illustrated

with several numerical simulations. Second, the relevance of this modeling engine to perform nonlinear waveform

inversion of a 3D sea-bottom hydrophone dataset collected in the Valhall oil field (north Sea) is discussed.

1 Introduction
Full waveform inversion (FWI) is a data-fitting inverse

problem which allows for the estimation of subsurface

parameters from the recordings of seismic waves near

the surface with a theoretical spatial resolution of half

a wavelength (Virieux and Operto (2009) for a recent

review). The forward problem is the resolution of the wave

equation for each source of the seismic experiment. In the

regime of small deformations that characterize seismic wave

propagation, the subsurface can be considered as a linear

(visco-)elastic medium. However, the subsurface is often

approximated by an acoustic medium in marine exploration

geophysics, that allows for the computational burden of

seismic modeling to be reduced by two to three orders of

magnitude. Seismic modeling can be performed in the time-

space domain or in the frequency-space domain (Virieux

et al., 2009). One drawback of time-marching approaches is

that modeling must be started from scratch each time a new

source is considered (3D acquisitions can involve several

thousands of sources). A second drawback is related to the

implementation of attenuation, which requires to introduce

memory variables. In contrast, frequency-domain wave

modeling is a boundary-value problem, which requires the

resolution of a large and sparse system of linear equations

per frequency, the solution of which is the monochromatic

wavefield and the right-hand side is the source. In virtue of

the correspondence principle, implementation of attenuation

in the frequency domain is straightforward through the use of

complex-valued wavespeeds (Carcione, 2001). Frequency-

domain modeling can be efficiently performed for multiple

sources by solving the time-harmonic wave equation with

sparse direct solvers (this kind of modeling approach is

referred to as DSFDM in the following) : a lower-upper

(LU) decomposition of the so-called impedance matrix is

performed before computing the solutions by substitutions.

Although the LU decomposition is expensive in terms of

memory, floating-point operations and communications,

Operto et al. (2007) and many others since then have

shown the feasibility of 3D DSFDM at low frequencies.

Recent developments that take advantage of some low-rank

properties of the impedance matrix have further improved

the efficiency of 3D DSFDM (Wang et al., 2012; Weisbecker

et al., 2013). A resolution analysis of FWI shows that the

inversion of the seismic data can be limited to a few discrete

frequency components for acquisition geometries that record

seismic waves over a broad range of incidence angles (as

for fixed-spread sea-bottom acquisition geometries) (Sirgue

and Pratt, 2004). In this framework, frequency-domain

FWI based on DSFDM can be significantly faster at low

frequencies relative to frequency-domain FWI based on

time-domain modeling (Brossier et al., 2013).

When a finite-difference method is used to discretize

the wave equation, the LU factorization requires designing

finite-difference stencil with specifications that differ

from those used in finite-difference time-domain (FDTD)

modeling (Operto et al., 2007) : both the dimension and

the numerical bandwidth of the matrix must be minimized.

The first requirement direct us toward 2nd-order wave

equation through a parsimonious approach such that a

reduced number of wavefield components are computed.

Moreover, the stencil should provide a sufficient accuracy

for a discretization rule of four grid points per wavelength,

which is consistent with the theoretical resolution of FWI.

This prevents using 2nd-order accurate stencil. On the other

hand, minimization of the numerical bandwidth prevents

using high-order accurate stencil. The so-called mixed grid

approach (Jo et al., 1996) aims to conciliate these apparently

contradictory requirements with two recipes : the first one

linearly combines several stiffness matrices that are built on

different rotated coordinate systems to mitigate numerical

anisotropy. The second one spreads the mass term over

the nodes involved in the stencil to minimize numerical

dispersion. The resulting stencil has the same numerical

bandwidth than a 2nd-order accurate stencil and a similar or

even better accuracy than a 4th-order accurate stencil.

The 3D visco-acoustic (isotropic) DSFDM stencil

is presented in Operto et al. (2007) and Brossier et al.

(2010). Here, we extend this stencil to introduce vertical

transverse isotropy (VTI) in 3D visco-acoustic modeling,

as it is often mandatory to account for anisotropy in FWI

of seismic data. Following Wang et al. (2012), we recast

the visco-acoustic VTI wave equation as a 4th-order partial

differential equation, starting from the velocity-stress

elastodynamic wave equation for VTI media and canceling

the shear wavespeed on the symmetry axis (Duveneck and

Bakker, 2011). We show how this equation can be easily

implemented after a slight adaptation of the isotropic 27-

point mixed-grid stencil. Numerical simulation in a realistic

VTI model from the Valhall oil field illustrates the potential

of the method as a modeling engine for visco-acoustic VTI

FWI of ocean-bottom seismic data.
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2 Governing equation and finite-
difference discretization

2.1 Fourth-order acoustic VTI equation
Let’s consider the velocity-stress elastodynamic equation

for VTI media with explosive sources s applied on the normal

stress components.

∂tvx = b
(
∂xσxx + ∂yσxy + ∂zσxz

)
,

∂tvy = b
(
∂xσxy + ∂yσyy + ∂zσyz

)
,

∂tvz = b
(
∂xσxz + ∂yσyz + ∂zσzz

)
,

∂tσxx = c11∂xvx + c12∂yvy + c13∂zvz +
c11+c12+c13

D ∂t s,
∂tσyy = c12∂xvx + c11∂yvy + c13∂zvz +

c11+c12+c13

D ∂t s,
∂tσzz = c13∂xvx + c13∂yvy + c33∂zvz +

c33+2 c13

D ∂t s,
∂tσyz = c55

(
∂yvz + ∂zvy

)
,

∂tσxz = c55 (∂xvz + ∂zvx) ,

∂tσxy = c66

(
∂xvy + ∂yvx

)
,

(1)

where vi denotes the particle-velocity wavefields, σi j the

stress wavefields, ci j the coefficients of the stiffness tensor

and b is the buoyancy, the inverse of the density ρ and

D = 2 c11 + 2 c12 + 4 c13 + c33. The factors of the source term

s are chosen to minimize the emission of shear waves at the

source position.

We set the shear wave velocity on the symmetry axis to

0 (c55 = c66 = 0) to derive the VTI equation in the acoustic

approximation (Duveneck and Bakker, 2011). This leads to :

∂tvx = b∂xσxx,
∂tvy = b∂yσyy,
∂tvz = b∂zσzz,

∂tg = c11

(
∂xvx + ∂yvy

)
+ c13∂zvz + sg∂t s,

∂tq = c13

(
∂xvx + ∂yvy

)
+ c33∂zvz + sq∂t s,

(2)

where g = σxx = σyy, q = σzz, sg =
2 c11+c13

D , sq =
c33+2 c13

D
and D = 4 c11 + 4 c13 + c33. In the acoustic approximation

of VTI seismic modeling, we shall approximate the pressure

p as p = 1
3
(2g + q). To derive equation 2, we have used the

relationship c12 = c11 − 2c66 in VTI media, which reduces to

c12 = c11 when c66 = 0. In isotropic media, sg = sq = 1.

Applying a Fourier transform with respect to time and

eliminating the particle-velocity wavefield from the system

gives a system of 2nd-order partial differential equations for

the stress fields q and q :

ω2

κ0
g + (1 + 2ε) (X +Y) g +

√
1 + 2δZ q =

ω2 sg

κ0
s,(3)

ω2

κ0
q +

√
1 + 2δ (X +Y) g +Z q =

ω2 sq

κ0
s. (4)

In Eqs. -4, we introduce a subsurface parameterization

defined by the vertical wavespeed VP0 and the dimensionless

Thomsen’s parameters δ and ε. The bulk modulus on the

symmetry axis is denoted by κ0 = ρV2
P0. The ci j coefficients

are related to these parameters by :

c33 = ρV2
P0,

c11 = ρV2
P0

√
1 + 2ε,

c13 = c33

√
1 + δ = ρV2

P0

√
1 + δ.

For sake of compactness, the following notations for the 2nd-

order differential operators are introduced :

X = 1

ξx
∂x

b
ξx
∂x, Y = 1

ξy
∂y

b
ξy
∂y, Z = 1

ξz
∂z

b
ξz
∂z.

We implement perfectly-matched layer (PML) absorbing

conditions through the 1D functions ξx = 1+ i γx
ω

, ξy = 1+ i γy

ω

and ξz = 1 + i γz
ω

, where functions γx, γy and γz control the

damping of the wavefield in the PMLs (Operto et al., 2007).

The source excitation in the frequency domain is denoted by

s and we found sg =
2(1+2 ε)+

√
1+2 δ

D and sq =
1+2
√

1+2 δ
D with

D = 4
√

1 + 2 ε + 4
√

1 + 2 δ + 1 for explosive source.

We aim to eliminate q from equations 2.1-4 to derive a

4th-order equation for g. We found

q =
1√

1 + 2δ
g+

2(ε − δ)κ0
ω2
√

1 + 2δ
(X +Y) g+

(
sq − 1√

1 + 2δ
sg

)
s.

(5)

Injecting the expression of q in equation 2.1 gives the 4th-

order equation satisfied by g :

ω2

[
ω2

κ0
+ (1 + 2ε) (X +Y) +

√
1 + 2δZ 1√

1 + 2δ

]
g (6)

+2
√

1 + 2δZκ0(ε − δ)√
1 + 2δ

(X +Y) g

=
ω4 sg

κ0
s − ω2

√
1 + 2δZ

(
sq − 1√

1 + 2δ
sg

)
s. (7)

For homogeneous δ, equation 7 shows that the VTI equation

can be decomposed into an elliptic anisotropic operator (ω
2

κ0
+

(1 + 2ε) (X +Y) + Z) and an anellipticity term (2Zκ0(ε −
δ) (X +Y)).

2.2 Finite-difference discretization
The VTI acoustic equation, eq. 7, is implemented after

a slight adaptation of the isotropic stencil (Operto et al.,

2007). The isotropic and VTI wave equations can be written

in compact form as :

Isotropic : [M + S] p = s; (8)

VT I : ω2 {[Me + Se] g} + E g = A g = s′, q = B g + s”,

with p = (1/3)(2 g + q). (9)

The mass matrix Me is built with the same anti-lumped mass

strategy than the isotropic counterpart M.

The elliptic stiffness matrix Se is easily inferred from the

isotropic counterpart S. First, we multiply each coefficient of

S that involves an horizontal spatial derivative with (1 + 2εk)

where k is the index of the row to which the coefficient

belongs. Second, we need to form the matrix-vector product√
1 + 2δZ(g/

√
1 + 2δ). We first discretize

√
1 + 2δZ by

multiplying each coefficient of S that involves a vertical

spatial derivative with
√

1 + 2δk, where k is the index of

the row to which the coefficient belongs. Then, we inject

the discrete expressions of g/
√

1 + 2δ in the matrix-vector

product, that amounts to divide each coefficient that involves

a vertical spatial derivative in S by
√

1 + 2δl, where l is the

column index to which the coefficient belongs.

The anelliptic matrix E is discretized with a parsimonious

2nd-order accurate staggered-grid stencil, which preserves

the spatial support of the stencil over two grid intervals.

Once g is computed, we infer q from eq. 5. We discretize

the matrix B with a 2nd-order accurate stencil, although

any other stencil can be used as computation of q does not

require system resolution.

VTI modeling is performed at the same cost than

isotropic modeling. A dispersion analysis in homogeneous
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media shows that the weighting coefficients of the mixed-

grid stencil that were obtained for the isotropic equation

can be re-used for modeling in elliptic media with the same

discretization rule of 4 grid points per wavelength. These

coefficients were found quite insensitive to the value of ε.

2.3 Numerical examples
We validate the DSFDM method against a O(Δt2,Δx4)

staggered-grid finite-difference time-domain (FDTD)

method. During FDTD modeling, monochromatic wavefields

are extracted on the fly in the loop over time steps by discrete

Fourier transform (Sirgue et al., 2007). During DSFDM, we

use the sparse direct solver MUMPS (Amestoy et al., 2000)

to perform the LU factorization, which was computed in

single and double precision without differences in the results.

The fill-reducing matrix ordering is performed with a nested-

dissection algorithm. We observed some instabilities in the

PMLs for VTI media, when the grid interval is significantly

smaller that a quarter of a wavelength. Pragmatically, we

force the medium to be elliptic in the PMLs to avoid these

instabilities.

2.4 Layer model
We consider a subsurface model composed of two

homogeneous layers delineated by a flat reflector to

assess the accuracy of the mixed-grid stencil when the

wavefield interacts with a sharp discontinuity. We use

the same numerical grid to perform the DSFDM and the

FDTD simulations such that the reflector discretization

is identical for each numerical method. The vertical

wavespeed is 2 km/s and 2.5 km/s in the upper and lower

layers, respectively, while the density is 1000 kg/m3 and

1500 kg/m3, respectively. The upper layer is elliptic with

δ = ε = 0.05, while δ = 0.1 and ε = 0.2 in the bottom layer.

The modeled frequency is 10 Hz. The subsurface model have

dimensions (5km,5km,2km) and is discretized with a grid

interval of 25m leading to a 201x201x81 finite-difference

grid. A 10-Hz frequency leads to a discretization rule of

eight grid points per minimum wavelength. The length of

the time-domain simulation is 12 s.

Monochromatic wavefields computed with DSFDM and

FDTD match well from a qualitative viewpoint (Fig. 1).

Direct comparison between DSFDM and FDTD solutions

shows an excellent match when the propagation direction

follows one of the three Cartesian directions (Fig. 1(a-c)),

while phase and amplitude mismatches are visible when the

propagation direction does not follow a Cartesian direction

(Fig. 1(d-f)). We interpret these mismatches as the numerical

anisotropy of the FDTD stencil.

2.5 Valhall model
We present simulations in a VTI visco-acoustic model

of the Valhall oil field (Fig. 2(a-b)) that was developed by

reflection traveltime tomography (courtesy of BP). The water

depth is around 70m. The subsurface is characterized by soft

sediments above low-velocity gas layers. The reservoir at

2.5 km in depth delineates a sharp positive velocity contrast.

The maximum anisotropy reaches a value of 15 percent. The

footprint of anisotropy on FWI is discussed in Prieux et al.

(2011). The model dimensions are 16km x 9km x 4.5km.
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Figure 1 – Layer model. (a) DSFDM monochromatic

wavefield. Frequency is 10 hz. (b) FDTD monochromatic

wavefield. (c-e) Direct comparison between DSFDM and

FDTD solutions along x-, y-, z- profiles running across the

source position. Amplitudes are roughly corrected for

geometrical spreading. (f-h) Same as (c-e) for profiles

extracted across the position (x,y,z)=(3km,3km,1.5km).

We compare VTI monochromatic wavefields computed

with DSFDM and FDTD for the 7-Hz frequency and a source

located on the sea bottom at (x=3.1km,y=13km,z=0.07km).

The grid intervals are 50m and 25 m for DSFDM and

FDTD, respectively. This gives a discretization of 4 grid

points per minimum wavelength in DSFDM. The grid

dimensions are 182 x 322 x 92 for DSFDM. Adding eight

grid points in the PMLs leads to 6.7 millions of unknowns.

A free surface condition is set on top of the model. The

source is positioned in the finite-difference grid with a sinc

parameterization (Hicks, 2002). The length of the FDTD
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simulation is 20s and guarantees that the steady-state regime

is reached. The DSFDM simulations were performed on

16 Intel(R) Xeon(R) CPU X5660 @ 2.80GHz bi-processor

nodes. Each node is equipped with 12 cores and 48Gb of

shared memory. The connecting network is Infiniband and

the compiler is INTEL. We distributed the LU factorization

and the substitution step over 16 Message-Passing-Interface

(MPI) processes (1 per node) and we used 12 threads

per MPI process for basic linear algebra tasks performed

with a threaded distribution of the Basic Linear Algebra

Subroutines (BLAS3). The LU factorization took 12.5mn

and the substitution step took 0.75s per source. The total

amount of memory used during the LU factorization

for 515Gb. The agreement between DSFDM and FDTD

wavefields can be qualitatively assessed in Fig. 2(c-d)).

Comparison between real data and DSFDM solutions

extracted at 5m in depth below the sea surface shows a good

agreement owing to the fact that the smooth Valhall model

does not predict the full wavefield complexity (Fig. 3). In

particular, we notice some mismatches at offsets where

reflected waves and low-velocity layers have a significant

footprint in the monochromatic wavefield. However the

VTI DSFDM solutions clearly better matches the recorded

data than the isotropic counterpart, hence supporting our

anisotropic implementation of frequency-domain modeling

3 Seismic imaging by FWI
Our finite-difference frequency-domain method can be

used as a modeling engine to estimate several subsurface

parameters m at each node of the computational domain by

nonlinear frequency-domain FWI. Optimization parameters

can be a subset of parameters (VP0, ρ, δ, ε) or of any

other combination of them (see Operto et al. (2013)

for a discussion on the role of the parameterization on

multiparameter FWI). FWI aims to minimize the misfit

between seismic data d collected near the surface and

modeled data. The data misfit is generally the difference

between the recorded and modeled data and the least-squares

norm C of this difference provides a possible measure of the

distance between recorded and modeled data.

The optimization problem can be stated as

min
m

C(m) = min
m

1

2

∑
ω

∑
s

∑
r

‖(Rr p(m))ω,s − dω,s,r‖22. (10)

where s and r denote the sources and receivers, respectively,

p is the modeled pressure wavefield, and Rr is a sampling

operator with extract the values of p at the position of r.

Minimization of C around a starting model m0 gives the

model perturbation δm

δm = −H−1 ∇C, (11)

where ∇C is the gradient of the misfit function and H is the

Hessian, the second derivative of C. The updated model is

given by m1 = m0 + δm and this updating can be iterated in

a nonlinear way using the final model of iteration k as the

initial model of the next iteration.

The gradient of the misfit function is computed with

the adjoint-state method, which requires the solving of two

forward problems per source (Plessix, 2006). The action of

the Hessian on the gradient can be accounted for without
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Figure 2 – (a-b) Valhall model. (a) VP0. (b) ε − δ. (c-d)

Seven-Hz wavefield. (c) FDTD. (d) DSFDM.

explicitly building the Hessian using matrix-free methods

such as the quasi-Newton l-BFGS method (Nocedal and

Wright, 2006) or the truncated Newton method (Métivier

et al., 2013).

To compute ∇C with the adjoint-state method, we

augment the misfit function with constraints corresponding

to the forward-problem (state) equations

L(g, q, p, a1, a2, a3,m) =
∑
ω

∑
s

∑
r

‖Rr pω,s − dω,s,r‖2

+� < a1ω,s , A(ω,m)gω,s − bω,s >Ω

+�
∑
ω

∑
s

< a2ω,s , qω,s − B(ω,m)gω,s − s′ω,s >Ω

+�
∑
ω

∑
s

< a3ω,s , pω,s −
1

3
(2gω,s + qω,s) >Ω, (12)

where Ω is the domain spanned by the computational

grid and a1ω,s ,a2ω,s ,a3ω,s are the adjoint-state variables

associated with each source and frequency. The real part

� is introduced in front of the inner products because the

state and variables are complex-valued while the misfit

function is real valued. For any realizations of the state

equations, ∇mC = ∇mL. The adjoint-state variables are

chosen at the saddle points of the Lagrangian L with
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Figure 3 – Valhall. (a) Real receiver gather. Black and white

arrows point a subcritical reflection and a polarity reversal

in the first arrival, respectively. (b-c) Real data (b) and

DSFDM data (c) for the 7-Hz frequency. DSFDM data were

multiplied with the source signature that was estimated by

matching the real data with the DSFDM Green functions.

(d) Comparison along the yellow line in (b-c) between real

data (black) and VTI/isotropic (top/bottom) DSFDM data

(gray), plotted with an amplitude gain with offset.

Mismatches (red ellipses) are shown at offsets where the

Valhall model does not predict the wavefield complexity

(arrows in (a)). VTI synthetics match better the real data

than isotropic ones at long offsets where anisotropic effects

are significant (blue ellipse).

respect to the state variables g, q and p. After noting that

a3ω,s =
∑

r Rt (Rr pω,s − dω,s,r
)∗

, the adjoint-state equations

satisfied by a1 and a2 are given by

At a∗1ω,s =
(

1

3
Bt(ω,m) +

2

3
I
)∑

r

Rt (Rr pω,s − dω,s,r
)∗ .

a2ω,s =
1

3

∑
r

Rt (Rr pω,s − dω,s,r
)∗ . (13)

The gradient of C is given by

∇Cm =
∑
ω

∑
s

�
(
< a1ω,s ,

∂A(ω,m)

∂m
gω,s >Ω

+ < a2ω,s ,
∂B(ω,m)

∂m
gω,s >Ω

)
. (14)

We can neglect the second term if we assume that the

subsurface is known at the receiver positions. Gradient

computation requires to perform one LU factorization of

A per frequency and two substitution steps per source

s to compute the incident wavefield g and the adjoint

wavefield a1. The direct solver MUMPS provides the

necessary facilities to apply either A or its transpose to a

vector for the computation of these two wavefields. The

performances of isotropic frequency-domain FWI based on

FDTD and DSFDM are compared in Brossier et al. (2013)

for the Valhall survey, which involves 2302 hydrophone

receivers and 50,000 shots (during FWI, receivers are

processed as sources to reduce the number of modeling

taking advantage of the spatial reciprocity of the Green

functions). When frequency-domain FWI is performed with

FDTD, monochromatic wavefields are extracted on the fly

in the loop over time steps by discrete Fourier transform

or phase sensitivity detection (Nihei and Li, 2007; Sirgue

et al., 2007), allowing for the extraction of several frequency

components without significant computational burden.

Time-domain modeling was performed on an IBM Blue

Gene P, equipped with single-processor Power PC 450

nodes, interconnected through the IBM 3D toroidal network.

Two-level parallelism is implemented by distributing 512

sources over the computing processors and by decomposing

the subsurface model in four sub-domains. Two groups of 5

and 9 frequencies are successively inverted in the frequency

bands [3.5-4] Hz and [4-5] Hz, respectively. FWI based on

DSFDM was performed on a cluster equipped with Intel

Westmere bi-processor nodes, connected to a high-speed

Mellanox QDR 40 Gb/s Infiniband network. Each node is

composed of 12 computing cores at 2.26 GHz, which share

72 Gb of core memory. Two discrete frequencies, 3.8 Hz

and 4.5 hz, are successively inverted using 6 nodes. For

these architectures and experimental setup, FWI based on

DSFDM was 18-times faster than FWI based on FDTD. The

two inversions used the same amount of memory (around

500 Gb) although the memory usage is quite different in

the two cases : in DSFDM, the memory is mainly used to

store the LU factors and only a limited number of sources

are processed in parallel during the substitution step taking

advantage of BLAS3 library before moving to another set of

sources. In contrast, a number of sources as large as possible

is processed in parallel during FDTD modeling (as almost no

communication is required by the source distribution), which

requires the distributed storage in core of the corresponding

wavefield solutions.

CFA 2014 Poitiers22-25 Avril 2014, Poitiers

1632



We should add that the performances of DSFSDM can be

further improved by using a block low-rank version of the

MUMPS solver (Weisbecker et al., 2013). These conclusions

apply to the anisotropic scheme presented in this study since

it does not introduce computational burden relative to the

isotropic case.

4 Conclusion
We have presented a parsimonious finite-difference

frequency-domain method that is suitable to perform

visco-acoustic modeling in vertical transversely isotropic

media with sparse direct solver. This modeling engine is

designed for FWI of fixed-spread data in which anisotropic

and attenuation effects can be introduced without extra

cost relative to isotropic imaging. A discretization rule of

four grid points per wavelength is enough to guarantee

accurate simulations and is consistent with the theoretical

resolution of FWI. The implementation of the block low-

rank approximation in sparse direct solver should still

increase the computational efficiency of the method.
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