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Statistical modal Energy distribution Analysis (SmEdA) can be used to model a fluid-structure problem based on 
modal information of the uncoupled-subsystems. Recently, the method has been extended to include the effect of 
a dissipative treatment (i.e. damping or absorbing material). In this paper, SmEdA is tested on a steel plate 
with/without damping treatment coupled to an acoustic cavity: the numerical result of the energy ratio is 
compared to experimental one. The data are analyzed for a mid-to-high frequency domain (up to 10 kHz in 1/3 
octave band). Both subsystem loss factors are experimentally obtained by a high-resolution modal analysis 
method based on the ESPRIT algorithm applied to impulse responses of the plate and the cavity. Predicting the 
energy level requires an accurate estimation of subsystem damping levels. The uncertainty on measured loss 
factors leads to an uncertainty in the energy ratio depending on min/max damping levels of individual modes in a 
given frequency band. Once min/max damping levels of subsystems are determined, SmEdA is used to compute 
the upper and lower limits of the subsystem energy ratio. A comparison with experimental results shows that the 
measurement data fits in between the SmEdA bounds. In this paper, two types of dissipative treatments are 
studied: i) a viscoelastic patch on the plate (modeled as an equivalent single layer plate) and ii) a porous material 
inside the cavity (modeled as an equivalent fluid).                                                        1

1  Introduction 
Statistical modal Energy distribution Analysis (SmEdA) 

[1] is an effective method to study many coupled problems 
in a mid-high frequency domain. The method has been 
recently extended to investigate the influence of an additive 
damping material applied to a structural subsystem in a 
plate-cavity coupled problem. The part of the plate treated 
with a viscoelastic damping pad was modeled as an 
equivalent property of the plate subsystem [2].  

In this paper, the focus is on the analogous concept of 
the equivalent property modeling of an additive damping 
applied to a cavity subsystem. When a porous material is 
placed inside an air-filled cavity, it can be integrated into a 
cavity subsystem as an equivalent fluid. Such modeling 
greatly reduces the size of the finite element subsystem to 
be solved thus leads to more efficient SmEdA 
implementation. At the end, the aim of the study is to 
investigate the influence of different dissipative materials 
over subsystem energy flow. Numerically obtained 
subsystem energy levels and their ratio will be discussed 
and compared to experimental results.  

Since the energy exchange between subsystems is 
affected by subsystem damping levels, it is important to 
obtain accurate data. The subsystem damping loss factors 
are experimentally estimated with the high-resolution 
modal analysis method based on the ESPRIT algorithm [3] 
from the impulse response of each subsystem. The loss 
factors are deduced from a number of selected resonant 
modes in 1/3 octave bands. As damping levels of individual 
modes can significantly vary within each frequency band, 
this variation can be used to set limits for a subsystem 
energy ratio. When minimum and maximum damping 
levels within a frequency band are considered in SmEdA 
calculation, they can form upper and lower limits of the 
cavity-plate energy ratio where experimentally obtained 
ratio can comply. This gives a deterministic range of an 
energy ratio for this particular numerical prediction method.  

2  SmEdA method for plate-cavity 
coupled problems 

The SmEdA modal coupling loss factor considers both 
spectral and spatial coupling of discretized subsystem 
resonances at a coupling surface. Boundary conditions of 
each uncoupled subsystem are well defined so that their 
modal information (resonant frequency and modeshape) is 

easily extracted with the FEM. In equation 1,  is the 
modal coupling loss factor between the plate mode p of 
subsystem 1 and the cavity mode q of subsystem 2, and 

 is the inter-modal work between plate modeshapes and 
cavity modeshapes.  and  are the damping loss factors 
 

(1)

    
of the plate mode p of subsystem 1 and the cavity mode q 
of subsystem 2 respectively. The influence of these two 
terms on subsystem energy levels are deduced for cases 
depending on different materials applied to each subsystem: 
(a) a bare plate coupled to a cavity, (b) a plate subsystem 
partially treated with a viscoelastic layer, (c) a cavity 
subsystem partially treated with a porous material. All cases 
are shown in figure 1. All three cases are first numerically 
modeled then evaluated through laboratory experiments. 
The case (b) implements the equivalent single layer 
modeling of a damped plate. A porous material in case (c) 
is modeled as an equivalent fluid. The methodology and 
numerical implementation for case (b) are detailed in [2] [4] 
[5] [6]. Here, the equivalent fluid modeling for case (c) will 
be emphasized.  
 
 

 
 
 
 
 

 
 
 
 

Dimensions of a steel plate and a cavity are 
0.5×0.6×0.001 (m) and 0.5×0.6×0.7 (m) respectively.  
The cavity has five surfaces of the 16 cm thick sold 
concrete, and its top opening can be covered by a concrete 
slab of the same thickness. One of the cavity walls has a 
small hole where microphone cables can be run through. A 
plate is coupled to a cavity by four metal hinges placed over 
the plate boundaries and screwed to the top ledges of the 
cavity. 

The dissipative materials are shown in figure 2. The 
damping pad is a viscoelastic material of a 3 mm thickness. 

Figure 1. Plate-cavity coupled problems for SmEdA 
analysis: (a) Bare plate coupled to cavity. (b) Damped plate 
coupled to cavity. (c) Bare plate coupled to damped cavity 
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It takes approximately 15 % of the plate surface area. One 
and two pads are applied to the plate in case (b). The porous 
layer is mineral fibres of a 3 cm thickness. Its volume is 
about 2 % of the cavity. 
 

 
 
 
 
 
 
 
 
 
 
 

1  

3 Equivalent fluid modeling of a 
partially treated cavity 

 
3.1 Porous material modeling 
 
A porous medium is a material containing pores that are 

typically filled with liquid or gas. The skeleton portion of 
the material is called a solid frame in which the sound wave 
can transmit. If the frame is assumed to be not locally 
reacting e.g. rigid when a porous material is excited by 
airborne plane waves, it can be modeled as an equivalent 
fluid characterized by the fluid bulk properties 
(characteristic impedance, propagation constant, dynamic 
density and dynamic compressibility) [7] [10]. Such 
method only corresponds to a treatment on the cavity walls 
as seen in case (c) of figure 1 e.g. not on or in front of the 
vibrating plate surface. Equivalent parameters can be 
deduced from material properties directly measured with an 
acoustical experiment, which will be given in section 3.2 
and 3.3.   

The sound propagation inside a porous material is 
governed by the motion equation and the constitutive law of 
the medium and is similar to the Helmholtz equation. In 
equation 2, keq is a wave number of the equivalent fluid, 

 
    (2) 

 
ρeq is an equivalent density and Keq is an equivalent 
compressibility. Then the celerity and the characteristic 
impedance of the equivalent fluid are complex and 
frequency dependent:  
 

   (3)  
     (4) 
     (5) 

 
In fact, there are several different equivalent fluid 

models depending on the expressions of parameters. They 
normally differ by a number of micro scale parameters such 
as flow resistivity, porosity, tortuosity, characteristic length, 
etc. that create bulk properties. Empirical models can give 

equivalent density and fluid wavenumber and are the 
simplest since they depend on a single parameter, a flow 
resistivity (σ). Equation 6 and 7 are the Delany-Bazley 
model and are represented in terms of power law relation:  

 
 (6) 

 (7) 
 

where X = ρf/σ is the adimensional number that quantifies 
the relative importance of inertial effects [8]. Note that the 
flow resistivity of the porous material needed for the 
analytical calculation was given by the manufacture. 
 

 
3.2 Two-cavity-method  
 
Bulk properties describe the interaction between 

material and sound wave and are independent of a material 
thickness and a size. The characteristic impedance and the 
propagation constant can be derived from a set of 
distinctive surface impedance measurements (impedance 
tube measurement) of a porous material. This can be 
achieved by changing an air depth behind the porous 
material. This method is called the “two-cavity-method” 
proposed by Yaniv [9] and Utsuno [10]. 

As seen in figure 3, a sample layer of the porous 
material is placed inside the impedance tube for 
measurements of the "two-cavity-method". Arbitrary 
acoustic impedances behind the porous sample can be  

 

 
  

 

achieved by changing an air space depth behind. The 
acoustic impedance ZS at a reference surface can be related 
to the characteristic impedance Zc and the propagation 
constant keq as follows: 
 

   (8) 

    (9) 
 
where Za1 and Za2 are the impedance of a closed tube with 
different air space depths of L1 and L2 respectively, and Zs1 
and Zs2 are the reference surface impedances. The 
impedances of a closed tube are:  
 

             (10)  
             (11) 

 

Figure 2. Two damping pads attached to a steel plate (left). 
A porous material inside a cavity (right) 

Figure 3. Impedance tube measurement of the "two-cavity-
method" 
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where , c and k are air density, speed of sound and 
wavenumber respectively.  
 
 

3.3 Experimental procedure and results 
 
A porous sample with a thickness of 3 cm was cut and 

placed inside the impedance tube. Following the procedure 
detailed in [10], Zc and keq were obtained from a set of 
measured surface impedances (Zs1 and Zs2) and equation 8 
and 9. A big tube with a diameter of 10 cm was used to 
measure Zs1 and Zs2 for frequencies up to 1.6 kHz, and a 
small tube with a diameter of 3 cm was used for a range 
from 1.6 kHz to 6.4 kHz. Obtained parameters are shown in 
figure 4. Note that Zc is normalized with the air impedance 
( c). 

 
 

 
 
Once Zc and keq are obtained, the equivalent fluid 

parameters (ceq and ρeq) can be deduced with equation (3), 
(4) and (5). The equivalent celerity and density of the 
porous material are shown in figure 5. Visible transitions 
after 1.6 kHz seen in both figure 4 and 5 are due to lesser 
measurement qualities of the small impedance tube. 
Nevertheless, the empirical Delany-Bazley model is 
comparable to experimental results. The real parts of the 
equivalent celerity and density seen in figure 5 are averaged 
over 1/3 octave bands then used to calculate resonant 
frequencies and modeshapes in FEM modeling of an 
uncoupled damped cavity subsystem of case (c).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  
 4 Subsystem damping loss factor 

 
In order to give more accurate numerical predictions of 

subsystem energy levels, experimentally estimated 
subsystem damping levels (η1 and η2) were plugged into 
equation 1. The damping levels are estimated by the high-
resolution modal analysis method detailed in [3]. The 
subsystem damping for all three cases in figure 1 was 
considered: 1) a bare plate, 2) an empty cavity, 3) a plate 
damped with a single damping pad, 4) a plate damped with 
two damping pads and 5) a damped cavity. Impulse 
responses were taken at several locations on the plate 
subsystem and inside the cavity subsystem then damping 
levels were estimated and averaged from a number of 
selected resonant peaks for each 1/3 octave band. In figure 
6, damping levels of individual modes for a plate damped 
with a single damping pad are shown in dots, and an 
average value is shown in line. Figure 7 shows averaged 
levels of all five subsystems. The influence of the 
dissipative materials is apparent. However, two damping 
pads do not double the loss factors compared to those of a 
single pad. The levels are approximately twice at low 
frequencies, and the effect diminishes as frequency 
increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The damping level (η1 and η2) has a direct impact on 

subsystem energy levels as seen in equation 1. In other 
words, an accuracy of the SmEdA depends on them. Unless 
exact damping levels are determined, a numerical 

Figure 5. Measured and analytical complex equivalent 
parameters of the porous material. (1) Real part of
equivalent celerity. (2) Real part of equivalent density. 

Figure 4. Complex equivalent parameters of the porous
material. (1) Normalized characteristic impedance. (2)
Fluid wavenumber 

Figure 6. Damping loss factors of the plate treated with a 
single damping pad (case (b)). The red dot are damping 
levels of individual modes, and the blue line is an average 
value in 1/3 octave band.  

Figure 7. Experimentally estimated subsystem damping loss 
factors averaged in 1/3 octave band for case (a), (b) and (c). 
(1) Plate subsystem damping. (2) Cavity subsystem 
damping. 
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prediction is bound to deviate from an experimental result. 
Suppose that experimentally obtained damping levels are 
over or under estimated, then upper and lower bounds of 
the energy ratio (Ecavity/Eplate) can be set by considering the 
lowest and the highest damping levels in frequency bands.   
Even if an energy ratio deduced from the average damping 
levels differs from an experimental result, at least its 
possible deviation range can be predicted for an 
engineering purpose. Such results will be given in section 5. 

 
 
5 Subsystem energy relation 
 
5.1 Numerical and experimental 

procedure 
 
SmEdA subsystem energy levels were deduced as the 

power was injected into a random position on the plate 
surface. This was done by solving the SmEdA power flow 
equation [1]. This was also experimentally done as seen in 
figure 8. As the plate was excited by a stationary harmonic 
point force (sweep signal), the plate velocity and the cavity 
pressure were simultaneously measured and averaged over 
multiple locations in order to give the subsystem energy 
levels [11]. A frequency range for case (a) and (b) is up to 
10 kHz. Note that a frequency range for case (c) is up to the 
5 kHz band since the porous material properties measured 
with the impedance tube are valid until 6.4 kHz.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
5.2 Result and discussion 
 
Numerically obtained subsystem energy levels for three 

cases are shown in figure 9. Note that the SmEdA 
calculations were rendered with average subsystem 
damping levels. For case (a) and (b), the influence of the 
damping pad is apparent as seen in figure 9-(1). A single 
damping pad diminishes the plate energy levels by an 
average 7.5 dB compared to (a) at all frequencies. Two 
damping pads do not give twice the damping loss factor as 
seen in figure 7-(1). However, its effect is almost doubled 
in plate subsystem energies as the levels are decreased by 

an average 4 dB more than a single pad. The cavity energy 
levels also decrease when dissipative materials are applied 
to either subsystem. However, changes in acoustic energies 
are smaller between case (b) and (c) than those in plate 
energies. The effect of the porous material is also clearly 
seen in figure 9-(2). The porous material reduces the cavity 
energies by an average 3.5 dB compared to the empty 
cavity of case (a). Interestingly, the cavity energy levels are 
reduced more by treating the plate subsystem than directly 
treating the cavity at almost all frequencies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Subsystem energy levels experimentally obtained are 

presented in figure 10. The plate energies in figure 10-(1) 
are in accordance with the numerical results for all cases 
although the numerical levels are generally overestimated. 
The differences between plate energies for case (a) and (b) 
in experimental result are rather small compared to those in 
numerical result. The same tendencies are shown in the 
cavity energies as well in figure 10-(2). The SmEdA 
method can well predict the influence of different damping 
mechanisms of all three cases but overestimates overall 
levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 shows experimentally obtained subsystem 

energy ratio (Ecavity/Eplate) for case (b) in red solid line, when 
the plate is treated with two damping pads. The upper 
numerical limit in black dotted line is given when the 

Figure 8. Experimental setup of the plate-cavity coupled
structure. Subsystem frequency responses (plate velocity 
and cavity pressure) are simultaneously measured as the 
plate is excited. Force and acceleration at the drive point are 
also measured with an impedance head.  

Figure 9. Numerically obtained subsystem energy levels in 
1/3 octave bands for case (a), (b) and (c). (1) Plate 
subsystem energy. (2) Cavity subsystem energy 

Figure 10. Experimentally obtained subsystem energy 
levels in 1/3 octave bands for case (a), (b) and (c). (1) Plate 
subsystem energy. (2) Cavity subsystem energy 
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lowest damping levels for both subsystems are considered. 
The highest damping levels then set the lower limit. 
Experimental result is within the limits only at high 
frequencies above 1 kHz. The discrepancies at low 
frequencies could be due to the coupling mechanism in 
experimental setup. If the plate boundaries are not ideally  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
clamped, this changes the actual dimension of the plate 
different from that of the finite element model of an 
uncoupled plate. Such differences can change a number of 
plate resonant modes and modal orders which can 
eventually lead to different spectral and spatial couplings 
with the cavity modes. Then the amount of energy 
exchanged through these couplings can deviate from 
numerical predictions.  

Figure 12 shows both numerical and experimental 
energy ratios for all three cases. The dissipative treatment 
applied to the plate subsystem alone did not result in 
substantial change compared to case (a). As seen in figure 
12-(1) and 12-(2), both numerical and experimental results 
of case (b) are comparable for the mid-high domain (above 
800 Hz). Since the structural treatment resulted in reduction 
of both subsystem energy levels as seen in figure 9 and 10, 
their ratios remain almost unchanged. However, the ratio of 
case (c) is lower than the rest since only the cavity energies 
are reduced by the porous material. The ratio of case (c) is 
approximately 4 dB lower than the rest for both numerical 
and experimental results. This clearly demonstrates a 
necessity of the direct acoustic response reduction by an 
absorbing material if a change in subsystem energy ratio is 
expected.  

Figure 12-(3) shows direct comparisons between 
numerical and experimental results for case (a) and (c). The 
numerical predictions are overall comparable to 
experimental results notably for the mid-high domain. 
Above 1 kHz, discrepancies between numerical and 
experimental results are an average 1.7 dB for case (a) and 
an average 2.2 dB for case (c).    

The SmEdA predictions demonstrate overall 
comparable performance with experimental results for 
plate-cavity coupled problems. The method can also 
successfully predict the subsystem energy relation when 
subsystems are treated with dissipative materials. However, 
the discrepancies at low frequencies are persistent for all 
three cases. This could be due to non-ideal boundary 
condition brought by the coupling mechanism in 
experimental setup.  

 
 
 
 

 
 
 
 

 
 
6 Conclusion 
 
A plate-cavity coupled problem is investigated in the 

framework of SmEdA. When each subsystem is treated 
with dissipative materials (viscoelastic and porous), they 
can be modeled as equivalent single layer and equivalent 
fluid respectively. The equivalent properties of a porous 
material can be deduced from the simple impedance tube 
measurement of "two-cavity-method." Obtained parameters 
are complex and frequency dependent.  

It is demonstrated that the dissipative treatments have 
clear influence over subsystem damping levels as well as 
subsystem energy levels. However, accurate subsystem 
damping levels are required for deducing correct energy 
levels. Otherwise, the energy ratio can be predicted within a 
range whose upper and lower limits can be set by 
considering the lowest and the highest damping levels in 
frequency bands.  It is also shown that an energy ratio of 
the cavity subsystem over the plate subsystem is not 
significantly modified if only the structural subsystem is 
treated. This can be achieved by treating the cavity 
subsystem alone with a porous material. 
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Figure 11. Subsystem energy ratio (Ecavity/Eplate) in 1/3 
octave bands for case (b) when two damping pads are 
applied.  

Figure 12. Subsystem energy ratio (Ecavity/Eplate) in 1/3 
octave bands for case (a), (b) and (c). (1) SmEdA 
predictions. (2) Experimental results. (3) Comparisons 
between SmEdA prediction and experimental results for 
case (a) and (c).  
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