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La simulation numérique de la propagation d’ondes de choc acoustiques dans des milieux ayant une géométrie
complexe est un sujet ouvert. Pourtant, un tel outil de simulation numérique serait précieux pour mieux appréhender
des phénomènes tels que le bang sonique et son interaction avec la topographie, le Buzz Saw Noise ou encore la
propagation d’ondes de choc résultant de traumatisme. La méthode numérique de � Galerkin discontinue � semble
être une voie prometteuse. Cette méthode permet d’obtenir des schémas à la fois adaptés aux géométries complexes
(car basés sur des maillages non structurés) mais aussi étant d’ordre élevé ce qui garantit une très faible dispersion
et atténuation numériques, deux qualités absolument nécessaires pour la propagation en acoustique. Cependant, la
prise en compte des discontinuités, associées ici aux ondes de chocs, fait l’objet de nombreuses recherches dans
les différentes communautés utilisant cette méthode. Plusieurs stratégies existent comme le filtrage, l’introduction
de limiteur de pente ou encore l’addition de viscosité numérique. Ces méthodes sont examinées dans le contexte
de l’acoustique non linéaire.

1 Introduction
Acoustics is primarily about small amplitude perturbat-

ions, and consequently, nonlinear effects seldom get
importance. But, there are instances where nonlinear terms
can give rise to significant changes and play an important
role in many real situations. For example, in acoustical
shock waves, the nonlinearities get predominant because of
long-term accumulation of small nonlinear perturbations,
these are modeled by the inviscid Burgers’ equation.

We choose Runge-Kutta discontinous Galerkin (RKDG)
method for numerically solving such equations, as it
incorporates the geometrical flexiblity of the finite element
methods and the high potential of parallelization from the
finite volume methods. The development of RKDG and its
extension to multidimensional systems is done in a series of
papers by Cockburn and Shu using hyperbolic conservation
laws [1, 2, 3, 4, 5]. A similar treatment can be found for the
equation of nonlinear elastodynamics in heterogeneous solid
medium which are written in conservative form and then
solved using DG method in [15].

During the propagation of nonlinear waves, numerical
oscillations (precisely, Gibbs phenomenon) appear due to
the truncation of high frequency components. Thus, these
oscillations (see Fig.1) are purely numerical and do not occur
physically. Consequently, the solution has to be stabilized.
This is achieved by the use of various techniques namely,
slope limiters, filters and the method of artificial viscosity. In
this work, we develop a DG solver for the inviscid Burgers’
equation as in section 2. The shock generated during the
propagation is treated using the various slope limiters and
the artificial viscosity terms as discussed in section 3 and
section 4 respectively. The use of artificial viscosity terms
in the original system generates a convection-diffusion
type system, to solve we illustrate the construction of local
discontinous Galerkin in section 5. The numerical results
and the respective discussion is put in section 6. In section
7, we give a two-dimensional system in conservative form
equivalent to the kuznetsov equation of nonlinear acoustics
[7]. Finally, we end the discussion by giving the conclusions
and future perspectives of this work.

2 DG Solver for Inviscid Burgers’
Equation

The Burgers’ equation is the simplest equation to model
a one-dimensional, nonlinear problem in acoustics. In this
section, we develop the DG implementation using the weak

formulation of the inviscid Burgers’ equation, i.e.

ut + f (u)x = 0 (1)

where f = u2

2 , with the initial condition, u(x, 0) = u0(x), x ∈
R. The computational domain Ω = [a, b] is partitioned as,
Ωk = [xk−1, xk], k = 1, · · · ,N, where N is the number of
elements. We map each Ωk onto a reference element (I ∈
[−1, 1]) (for details see [8]), and the corresponding weak
formulation for the reference element becomes

∆xk

2
(Ut, li) + liF|1−1 −

∫ 1

−1
Fl′i(ξ)dξ = 0., i = 0, 1, . . . , P. (2)

where, U is the approximate solution of degree P, F is the
flux, li are the Lagrange interpolating polynomials and (·, ·)
is the standard inner product in L2(Ωk).

In the DG method, in order to keep the connectivity of
the flux with the neighbouring elements, the flux F|1

−1 at the
element boundaries is replaced by F∗ called the numerical
flux. Applying the Legendre-Gauss quadrature, we get

dUi

dt
+

2
∆xk

F∗(1)
li(1)
wi
− F∗(−1)

li(−1)
wi

+

P∑
s=0

FsD̂is

 = 0, (3)

where D̂is = −
Dsiws

wi
. The equation (3) is the semi-

discretization of the equation (1). The flux (F) inside
the element is computed using the definition of f . The
numerical boundary flux (F∗) is computed using Godunov’s
flux for Burgers’ equation as in [12]. Finally for the
temporal advancement, we use the third-order low-storage
Runge-Kutta method as discussed in [13].

Figure 1 shows the initial condition and the DG
simulation of a period of sine-wave just after the shock
formation (L = 0.31). The solution develops some spurious
oscillations at the discontinuity which disqualifies the
scheme. This outlines the need for more advanced method to
counter these oscillations which are not observed physically
and are purely numerical artifacts.

3 Slope Limiters
In this section, we discuss the most common slope

limiters used for reducing the spurious oscillations at
the discontinuties or shocks produced in propagation of
nonlinear waves. Here we illustrate three slope limiters,
namely, the first by Cockburn et al. [2], the second by
Biswas et al. [9] as a modification of the first one, and the
third an extension of Biswas given by Burbeau et al. [10].

We have computed the approximate solution in nodal
form i.e. where the solution is written as a Lagrange
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Figure 1 – Waveform obtained after the propagation of a
period of a sine-wave (left) beyond shock length (right)

(L = 0.31)

interpolant of degree P. Alternatively, the approximate
solution can be represented in modal form where the
solution is written as a sum of P orthogonal Legendre
polynomials [13]. The two forms are represented as

x ∈ Ωk : uk
h(x, t) =

P∑
n=0

ûk
n(t)Pn(x), (4)

x ∈ Ωk : uk
h(x, t) =

P∑
i=0

uk
h(xk

i , t)l
k
i (x). (5)

Here, Pn(x) are the Legendre polynomials of degree n, lki (x)
are the Lagrange interpolating polynomials and uk

h(x, t) is
the approximate solution in the kth element of size h. Also,
equation (4), can be written in matrix form as

Vû = u, whereVi j = P j−1(ξi), ξi ∈ [−1, 1]. (6)

Quoting [8], the matrix V is recognized as the
generalized Vandermonde matrix and will play a key
role in development of the scheme. For implementing the
slope limiters, we need the modes (û), which can be achieved
using (6) as û = V−1

i j u.
We start with the slope limiter given by Cockburn et al.

[2]. It modifies the boundary flux for each element and
consequently new modal values are computed. As a result,
the new limited solution is generated using these new modal
values. This flux limiter conserves the monotonocity of the
average solution i.e. ûk

0(t). Here, we define

ũk = uk
h(1, t) − ûk

0(t) =
∑P

n=1 ûk
n(t)Pn(1),

˜̃uk = uk
h(−1, t) − ûk

0(t) =
∑P

n=1 ûk
n(t)Pn(−1)

(7)

For the sake of brevity, we drop the argument t from the
modes in the following equations. We modify ũk and ˜̃uk as

ũk
new

= minmod
(
ũk, ûk+1

0 − ûk
0, û

k
0 − ûk−1

0

)
,

˜̃uk
new

= minmod
(˜̃uk, ûk

0 − ûk+1
0 , ûk−1

0 − ûk
0

)
respectively, where

minmod(a1, · · · , an) =


sign(a1) min

1≤i≤n
|ai|, if sign(a1) = ·

· = sign(an)
0, otherwise

Now, for P = 2 the new modes ûk(new)
1 and ûk(new)

2 can be
uniquely determined by solving the linear system,

ũk
new

= ûk(new)
1 P1(1) + ûk(new)

2 P2(1),

˜̃uk
new

= ûk(new)
1 P1(−1) + ûk(new)

2 P2(−1)
(8)

But for P ≥ 3, the modes can no longer be uniquely
determined using these modified fluxes. If the modes, ûk(new)

1
and ûk(new)

2 turn out to be different from the original modes
then the remaining modes n ≥ 3 are made 0.

While preserving the monotonocity of the average
numerical solution, this slope limiter flattens the smooth
extrema. To overcome this, Biswas et al. [9] proposed to
determine the higher-order modes by limiting the solution
moments. The limiter is given as follows,

(2n − 1)ûk(new)
n = minmod

(
(2n − 1)ûk

n,

ûk+1
n−1 − ûk

n−1, û
k
n−1 − ûk−1

n−1

)
(9)

As it is evident from (9), this slope limiter works
adaptively i.e. it works only when it feels the need of
itself. First, the highest-order coefficient is limited, then
successively the lower-order coefficients are limited when
the next higher order coefficient on the interval has already
been changed by limiting. In this way, the limiting is applied
only where it is needed, and the accuracy is retained in
smooth regions.

As an extension of the previous slope limiter, Burbeau
et al. [10] proposed this new limiter. Here, the Biswas limiter
is used as a regularity criterion given by

(2n − 1)uk(min)
n = minmod

(
(2n − 1)ûk

n,

ûk+1
n−1 − ûk

n−1, û
k
n−1 − ûk−1

n−1

)
(10)

If uk(min)
n = ûk

n then the limited solution will be

uk
h(x, t) =

n∑
l=0

ûk
l Pl(x) +

P∑
l=n+1

ûk(new)
n Pl(x) (11)

or else, ûk(new)
n = maxmod

(
uk(min)

n , uk(max)
n

)
where,

(2n − 1)uk(max)
n = minmod

(
(2n − 1)ûk

n(t),

wk
+ − ûk

n−1(t), ûk
n−1(t) − wk

−

)
(12)

wk
+ = ûk+1

n−1 − (2n − 1)ûk+1
n , and

wk
− = ûk−1

n−1 + (2n − 1)ûk−1
n (13)

maxmod(a1, · · · , an) =


sign(a1) max

1≤i≤n
|ai|, if sign(a1) = ·

· = sign(an)
0, otherwise

(14)

Here, the slopes are limited using the unlimited slopes of the
neighbouring elements, and one must store the limited slopes
and the unlimited slopes separately until all the limited slopes
are computed.
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Conclusively, the slope limiters are tools that reduces the
order of the solution to the first order or less when a shock
is detected. As a counterpart, they damp the smooth extrema
as expected. Moreover from fig.2, we can infer that the slope
limiters need a sufficiently high number of elements to work
satisfactorily, as in this particular case we have N = 200 and
P = 3 for the domain [−1.2, 1.2]. There efficiency decreases
when the number of elements decreases, for instance when
N = 40 and P = 5 the limiting becomes unsatisfactory (see
fig.3).

Figure 2 – The numerical solution using the limiter
proposed by Burbeau et al. (10)-(14). Left : initial

condition. Right : numerical solution compared to the
analytical at time t = 0.38

4 Artificial Viscosity
An alternative mechanism for stablizing the shocks is the

use of artificial viscosity terms in the considered hyperbolic
system of equations. The idea behind the artificial viscosity
method is to add a dissipative model term to the original
hyperbolic equation. For example, the augmented one
dimensional scalar hyperbolic equation looks like

ut + f (u)x = (εux)x. (15)

The right hand side term is the dissipative term added. The
parameter ε controls the amount of viscosity, it is expected to
be zero anywhere but around the shock. Therefore, a sensor
is needed to detect the discontinuity. Persson et al. [14] came
with a approach of discontinuity sensor, which is as follows.

Define,

uk
h(x, t) =

P∑
i=1

ûiPi, (16)

ũk
h(x, t) =

P−1∑
i=1

ûiPi. (17)

Then, the Smoothness Indicator is defined as

S k =
(u − ũ, u − ũ)k

(u, u)k
. (18)

Based on this definition, they define the artificial viscosity
funtion as

εk =


0 if sk < s0 − κ
ε0
2

(
1 + sin

(
π(sk−s0)

2κ

))
if s0 − κ ≤ sk < s0 + κ

ε0 if sk > s0 + κ

(19)

where, sk = log10 S k and the parameters ε0 ≈ O( h
p ), s0 ≈

log10 O( 1
p4 ) and κ is chosen empirically sufficiently large so

as to obtain a sharp but smooth shock profile. Note, these
parameters will vary from problem to problem. Therefore,
tests are to be made before fixing these parameters for a
particular model. An extension of this work has been done
by Klockner et al. [16].

Another instance is the use of continuous artificial
viscosity, as can be found in Barter et al. [17], where the
diffusion equation is used as a model for the artificial
viscosity. Once the viscosity is determined using this model,
they plug it in the state vector of the Navier-Stokes equation
and solve the system using the DG method. Here, the
shock is sensed using the smoothness indicator proposed by
Persson et al. as in equation (18).

The problem with the use of piecewise-contant artificial
viscosity function is that it induces oscillations at the
boundary of the element as there is jump in the viscosity
only and neither ux nor u has jumps. In the light of this, we
propose the use of a continuous smooth artificial viscosity
profile, which we call as Gaussian artificial viscosity, is
defined as

ε(x) = ε0 exp

− (
x − x0

σ0

)2 , (20)

where, ε0, σ0, x0 are chosen depending on the shock
strength, shock structure and the position of the shock
respectively. Instead of using the smoothness indicator
(18), we propose to use the second mode (ûk

1) of the modal
solution (4) to sense the shock. Once the shock is sensed,
the Gaussian artificial viscosity is centered around the
shock position. Note, whenever the shock is detected,
and only then, the viscosity becomes nonzero and the
inviscid Burgers’ equation (1) transforms into a convection-
diffusion equation (15) with f (u) = u2/2 . The adaptive
implementation of this idea is an interest of future work.

5 Convection-Diffusion Equation
The augmented inviscid Burgers’ equation with the

artificial viscosity term (15), is nothing but a convective-
diffusive equation. Here, we intend to solve the equation,

ut +

(
u2

2

)
x

= (ε(x)ux)x (21)

using the Local DG method (see [6]). In this method, we need
to write the equation (21) as a system of first-order equation
i.e.  ut +

(
u2

2

)
x
− (ε(x)q)x = 0

q − ux = 0
(22)

or, {
ut + ( f − ε(x)q)x = 0

q − Bx = 0 (23)
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where f = u2

2 and B = u. Also, define the total flux (F ) as

F = f − εq (24)

In order to write the weak formulation for the first-order
system (23), the Lagrange polynomials are used as the test
functions. If P is the degree of polynomial interpolation, the
inner mesh looks like xk

0, x
k
1, x

k
2, · · · , x

k
P−2, x

k
P−1, x

k
P.

For x ∈ Ωk, the approximate solution in nodal form looks
like

uk
h(x, t) =

P∑
i=0

uk
h(xk

i , t)l
k
i (x), (25)

where h is the width of an element. The other varibles like
F k

h , qk
h, Bk

h can be similarly expressed in nodal form.
Consequently, the weak formulation is

∫
Ωk

∂uk
h

∂t
lkj(x)dx −

∫
Ωk

F k
h

∂lkj(x)

∂x
dx

+
[
F̂ k

h (xk
r )lkj(xk

r ) − F̂ k
h (xk

l )lkj(xk
l )
]

= 0 (26)

∫
Ωk

qk
hlkj(x)dx +

∫
Ωk

Bk
h

∂lkj(x)

∂x
dx

−
[
B̂k

h(xk
r )lkj(xk

r ) − B̂k
h(xk

l )lkj(xk
l )
]

= 0 (27)

On substituting (25) in the above equation, we get

P∑
i=0

duk
h(xk

i , t)
dt

(
lki (x), lkj(x)

)
−

P∑
i=0

F k
h (xk

i , t)

lki (x),
∂lkj(x)

∂x


+

[
F̂ k

h (xk
r )lkj(xk

r ) − F̂ k
h (xk

l )lkj(xk
l )
]

= 0 (28)

P∑
i=0

qk
h(xk

i , t)
(
lki (x), lkj(x)

)
+

P∑
i=0

Bk
h(xk

i , t)

lki (x),
∂lkj(x)

∂x


−

[
B̂k

h(xk
r )lkj(xk

r ) − B̂k
h(xk

l )lkj(xk
l )
]

= 0. (29)

Note that the auxillary variable qk
h will be eliminated by using

the equation (29) in (28).
From (28)-(29), we identify that there are two terms of

boundary fluxes i.e. F̂ and B̂. First, we take the numerical
flux F̂ , which is defined as

F̂ = f̂ − ε̂q̂. (30)

Here, f̂ is defined using the Lax-Friedrich flux i.e.

f̂ (x−, x+) =
1
2

[
f (x−) + f (x+) + λ(u(x−) − u(x+))

]
(31)

where λ = max
inf uh(x)<s<sup uh(x)

| fu(s)|.

For defining the fluxes q̂ and B̂, we use the alternating
principle [18], which gives

ε̂ = ε+, q̂ = q+ and B̂ = B(u−) (32)

6 Numerical Experiment
In order to have a simulation for a long duration, we

need to have a sufficiently large spatial domain for the
wave propagation, which is not very convenient from a
computational point of view. Therefore in acoustics, we
solve the problem in retarded time, i.e. when a frame of
interest is chosen in the spatial domain and then travels in
time at the sound speed. For this setup the Burgers’ equation
is

∂p
∂σ
− p

∂p
∂τ

= 0, where p =
pa

p0
, σ =

x
L
, τ = ω0

(
t −

x
c0

)
.

(33)

Here, p, σ, τ a the dimensionless pressure, distance and time
(retarded) respectively. Also, ω0 is the characteristic angular
frequency of wave, and L is the characteristic distance (shock
length) for the nonlinear effects. Here, we solve the equation
(33) with the sawtooth wave as the initial condition,

p(τ, 0) =


−(τ + 0.95), if −0.95 ≤ τ ≤ 0.05
−(τ − 1.05), if 0.05 < τ ≤ 1.05

0, Otherwise

The domain of interest is Ω = [−1.2, 1.2], which is
discretized in N = 40 elements with the order of polynomial
approximations being P = 5. The distance of propagation
is σ = 0.38 and CFL = 0.8. All the numerical solutions
discussed in this article i.e. the unstabilized solution
(unlimited), solutions obtained using various limiters and
the solution obtained using the Gaussian artificial viscosity
(20) are compared with the analytical solution in fig.3. A
comparison of computation times of all the methods is given
in table 1.

Figure 3 – Zoom-in around the shock showing the
comparison of the unlimited solution, limited solutions and

solution obtained using the Gaussian artificial viscosity
(ArtVisco) with the analytical solution.
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Stabilizing Method Normalized Time Ratio
Unlimited 1.00
Cockburn 1.74

Biswas 2.44
Burbeau 4.63
ArtVisco 1.83

Tableau 1 – Comparison of Computation Time

Conclusively, as in fig.3 it can be seen that all the
solutions whether limited or not, are in good agreement
with the analytical solution for almost all the domain except
around the discontinuity. At the discontinuity, the unlimited
solution is having some spurious oscillations whereas the
limited methods by Burbeau, Biswas and Cockburn show
a smoothing effect. However, the solution obtained by the
method of artificial viscosity turns out as the most precise
even near the shock : it is the only one that shows no
oscillations at all. Moreover, the computation time taken by
the artificial viscosity method is comparable with the lower
limit of the time taken by the slope limiters. Therefore, the
method of artificial viscosity is more accurate and efficient
than the limiters.

7 Extension in Two-dimensions
As a future work, we intend to extend the method to

the Kuznetsov equation [7]. We start with a system of first-
order equations containing the quadratic nonlinear terms
equivalent to the Kuznetsov equation of nonlinear acoustics.
The fluid is assumed to be homogeneous in composition and
quiescent i.e. its ambient density and pressure are uniform
and there is no ambient flow. Also, the viscous and thermal
components are neglected. With the primary variables
being expressed as the sum of ambient quantities and
acoustic perturbations, for instance, p(x, t) = p0 + pa(x, t)
where, the subscript 0 and a indicates the ambient
quantities and acoustic perturbations respectively. We
define v = (u(x, y, z, t), v(x, y, z, t),w(x, y, z, t)) as the fluid
velocity, ρ is the fluid density, p is the pressure, U is the
internal energy and E is the total energy. Using this setup,
we give

∂ρa

∂t
+ ∇ · (ρ0va + ρava) = 0. (34)

ρ(x, t)ua
ρ(x, t)va
ρ(x, t)wa


t

+ ∇ ·

ρ0u2
a + p(x, t) ρ0vaua ρ0waua
ρ0uava ρ0v2

a + p(x, t) ρ0wava
ρ0uawa ρ0vawa ρ0w2

a + p(x, t)

 = 0,

(35)

∂E
∂t

+ ∇ ·
[
va(E + p(x, t))

]
= 0 (36)

where,

E = 1
2ρ(x, t)v2

a(x, t) + ρ(x, t)U(x, t) ,

Here, pa(x, t) is determined using the state equation i.e.

pa(x, t) = c2
0ρ

2
a (37)

This set of equations can be used to derive the Kuznetsov
equation with just algebraic manipulations and without any
additional assumption. Note, the system is of first-order
equations in conservative form, therefore it would be an
extension of Burgers’ equation to multidimensional system.

8 Conclusions and Perspectives
In this work, we infer that the use of artificial viscosity

is more accurate and is computationally more efficient than
the slope limiters. In future, we would extend the method of
artificial viscosity to the system of equations for nonlinear
acoustics in two-dimensions .
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