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The paper reviews some key ingredients of an efficient computational strategy for handling distributed random
excitations (diffuse field or turbulent boundary layer) in a vibro-acoustic context. Considered random excitations
are described as homogeneous weakly stationary random processes and are therefore described by auto-power
spectra and spatial correlation functions. A particular attention is devoted to the elimination of grazing incidences
for diffuse fields and to the selection of appropriate semi-empirical models for TBL excitations. Mesh requirements
related to an algebraic sampling strategy of such excitations are highlighted, with a particular emphasis on the
effect of the convective flow velocity. The evaluation of the random response is addressed both in direct and modal
contexts. Academic and industrial applications are presented. Comparison with reference analytical solutions are
also provided.

1 Introduction
Random excitations (diffuse field, turbulent boundary layer)
are frequently encountered in vibro-acoustic applications.
The distributed nature of such excitations requires some
attention in a discrete finite element context and is further
examined in this contribution. Specific aspects related to
diffuse filed and TBL excitations are described in the first
two sections while efficient computational strategies are
presented and illustrated in the last two sections.

2 Diffuse field

2.1 Introduction
The ’diffuse field’ concept is important in many acoustic
applications since it is directly related to the sound
field in a reverberant chamber traditionally involved in
experimental or numerical acoustic transmission studies.
The characterization of a diffuse field can be found in many
references ([1] and [2], for example). The purpose of this
section is the examination of a limitation of incidence angles
in the treatment of an acoustic diffuse field. The elimination
of grazing incidences can be investigated in two particular
contexts. The first one refers to the the modeling of a diffuse
field as a weakly stationary random process while the second
one refers to a more direct approximation of a diffuse field
using a sampling procedure (modeling the diffuse field as a
sum of discrete plane waves).

2.2 Diffuse field related to an infinite set of
plane waves

A perfect diffuse field can be obtained by summing up the
effect of an infinite number of uncorrelated plane waves
whose directions are equally spatially spread. The present
derivation is based on [3] and starts with the expression of
the pressure field related to a particular plane wave (index
n). This field can be expressed as pn(r, t) where r = (r, θ, φ)
is the vector position (in spherical coordinates) of the
considered evaluation point (see Figure 1) and t is the time.

Since the objective is the evaluation of the spatial correlation
function, two particular points are considered along axis 1 :
the first point (labeled ξ1) is located at the origin while the
second point (labeled ξ2) is located at coordinates (r, 0, 0).
If one denotes by xn(t) the instantaneous pressure value at the
origin for the considered plane wave :

xn(t) = pn(0, t) , (1)

one can easily retrieve the pressure at location r along axis
1 by converting the spatial interval into an equivalent time

Figure 1 – Coordinate system and particular plane wave.

Figure 2 – Limitation of grazing incidences.

interval [3] :

pn(r, t) = pn

(
0, t −

r
c

cos θn

)
= xn

(
t −

r
c

cos θn

)
. (2)

2.3 Derivation of the spatial correlation
function with elimination of grazing
incidences

The usual correlation function of a diffuse field can be
expressed as :

R(r, τ) =
1

4π

∫ +π/2

−π/2

∫ 2π

0
R0

(
τ −

r
c

cos θ
)
|sin θ| dφdθ . (3)

where R0(τ) is the auto-correlation function of xn(t) signals.

If the objective is to eliminate grazing incidences, one can
introduce a restriction concerning plane wave incidence
angles. With reference to Figure 2, this leads to incidence
angles θ given by :

−
π

2
≤ θ ≤ −α or α ≤ θ ≤

π

2
. (4)

Equation (3) can therefore be rewritten in the following
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form :

R(r, τ) =
1

4π

(∫ −α

−π/2

∫ 2π

0
R0

(
τ −

r
c

cos θ
)
|sin θ| dφdθ

+

∫ π/2

α

∫ 2π

0
R0

(
τ −

r
c

cos θ
)

sin θdφdθ
)
. (5)

Since the first integral is equal to the second one, the
following expression is easily obtained after integration
along φ :

R(r, τ) =

∫ π/2

α

R0

(
τ −

r
c

cos θ
)

sin θdθ . (6)

By the same change of variable :

t = τ −
r
c

cos θ , (7)

this equation can be rewritten as :

R(r, τ) =
c
r

∫ τ

τ− r
c cosα

R0 (t) dt . (8)

This expression can be formulated in terms of the power
spectral density S 0(ω) :

R(r, τ) =
c
r

∫ τ

τ− r
c cosα

R0 (t) dt , (9)

=
c
r

∫ τ

τ− r
c cosα

∫ +∞

−∞

S 0 (ω) eiωtdωdt , (10)

=
c
r

∫ +∞

−∞

S 0 (ω)
[
eiωt

]τ
τ− r

c cosα
dω , (11)

=
c
ωr

∫ +∞

−∞

S 0 (ω) sin
(
ωr cosα

c

)
eiωτdω .(12)

so that the spatial correlation function fc is given by

fc(r, ω) =
c
ωr

sin
(
ωr cosα

c

)
=

sin (kr cosα)
kr

. (13)

2.4 Examination of the correlation function
For practical purpose, it is more convenient to define
alternatively the restriction about incidence angles and to
scale the correlation function so that it is equal to 1 for r = 0.
Instead of referring to angle θ defined with reference to axis
1 (Figure 2) :

−
π

2
≤ θ ≤ −α or α ≤ θ ≤

π

2
, (14)

one can introduce a normal incidence angle θ′ (Figure 3) :

θ′ ≤ β . (15)

Further division by sin β leads to the final form of the updated
correlation function :

fc(r, ω) =
sin (kr sin β)

kr sin β
. (16)

This operation can be interpreted as a scaling of the
excitation in order to keep the same mean quadratic pressure
along the loaded surface for any β value. The effect of a
limitation of incidence angles is examined by a comparison
of the spatial correlation function (Figure 4) for the following
values of β angle : 60, 70 and 80 degrees. The related spatial
correlation functions are compared to the conventional
form (corresponding to β = 90 degrees) which do not
eliminate grazing incidences. As expected, a reduction of
the maximum incidence angle β leads to a more correlated
excitation.

Figure 3 – Normal incidence angles.

Figure 4 – Comparison of spatial correlation function for
various maximum normal incidence angles.

2.5 Sampling a diffuse field with elimination
of grazing incidences

The sampling procedure relies on the definition of a
finite set of plane waves with random phases. The main
issue is to achieve an equi-repartition of these plane waves
along a spherical (or hemi-spherical) surface with a possible
elimination of grazing incidences. In this context, the β
angle can be selected in order to define the acoustic volume
supporting the generation of plane waves. The discrete
incidence angles depend on the specification of the β value
and the number of parallel sectors N. Further information
can be found in [4].

3 Turbulent boundary layer excitation

3.1 Introduction
As for diffuse field excitations, the numerical treatment
of a TBL excitation can rely on different computational
strategies. A common point of all strategies is the need to
resolve the distributed random excitation along a discrete
surface. Usually the mesh resolution is fixed by the dynamic
behavior of the mechanical structure. The main purpose of
this section is to highlight the capacity of the mesh to resolve
spatial correlation effects along the loaded surface. This is
done by examining the spatial correlation function related
to Corcos model and evaluating the element contributions
to the mean quadratic incident pressure (or, equivalently, to
the incident power). Numerical simulations are performed
on three different meshes of a plate structure using various
computational strategies. Numerical results are compared
to reference (analytical) solutions. It is shown that reliable
results require the selection of an appropriate mesh for
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resolving accurately correlation effects.

3.2 Examination of spatial correlation
function

Various forms have been proposed over the years for the
spatial correlation function. The particular form given
by Corcos [5] is widely used. The oscillating part of
the correlation function is characterized by a convected
wavelength λc defined as :

λc =
uc

f
(17)

where f = ω/(2π) is the frequency (Hz).

Correlation lengths L1, L2 are related to the convected
wavelength λc through :

L1 =
λc

2πα1
(18)

and
L2 =

λc

2πα2
(19)

The factor 2πα1 is in the range 2π [0.10 . . . 0.12] =

[0.628 . . . 0.754] while factor 2πα2 is in the range
2π [0.70 . . . 1.20] = [4.398 . . . 7.540].

The correlation lengths and the convected wavelength (at
500, 1000, 2000 and 4000 Hz) are presented in Table 1 (for
a flow velocity uc = 30 m/s) and in Table 2 (for a flow
velocity uc = 150 m/s).

If one keeps in mind that the discretization of the oscillating
part of the correlation function requires at least 8 points per
wavelength (λc), one can conclude that the exponential decay
factors (controlled by L1 and L2) do not introduce usually
more stringent resolution requirements.

f L1 L2 λc

(Hz) (m) (m) (m)
500 0.0955 0.0136 0.0600

1000 0.0477 0.0068 0.0300
2000 0.0239 0.0034 0.0150
4000 0.0119 0.0017 0.0075

Table 1 – Correlation lengths L1, L2 and convected
wavelength λc at various frequencies for a TBL excitation

(flow velocity uc = 30 m/s, α1 = 0.10, α2 = 0.70).

f L1 L2 λc

(Hz) (m) (m) (m)
500 0.4775 0.0682 0.3000

1000 0.2387 0.0341 0.1500
2000 0.1194 0.0171 0.0750
4000 0.0597 0.0085 0.0375

Table 2 – Correlation lengths L1, L2 and convected
wavelength λc at various frequencies for a TBL excitation

(flow velocity uc = 150 m/s, α1 = 0.10, α2 = 0.70).

3.3 Element contribution to the mean
quadratic pressure and the incident
power spectra

The objective is to evaluate the mean quadratic pressure
spectrum and the incident power spectrum using element
contribution (loaded faces). This can be done by first
evaluating the pressure power spectrum at an arbitrary point
of the considered face. This evaluation is done hereafter for
a 2-D face (4 node rectangular element) as involved in a
3-D model. The mean quadratic pressure spectrum S <p2> is
directly related to the incident power spectrum through :

S Winc (ω) =
1

16ρc
S <p2>(ω) (20)

On will consider the particular case of a rectangular element
and evaluate the contribution of this element to the mean
quadratic pressure spectrum :

S e
<p2>

(ω) =
1

he
1he

2

∫ +1

−1

∫ +1

−1
S p(x(ξ, η), y(ξ, η), ω)|J|dξdη

(21)
where he

1 and he
2 are element dimensions along x1 and x2

directions while |J| = he
1he

2/4 is the determinant of the
Jacobian matrix.

The evaluation of this integral requires to set up the local
pressure power spectrum S p(x1, x2, ω) :

S p(x1(ξ, η), x2(ξ, η), ω) = E
[
p(ξ, η, ω)p∗(ξ, η, ω)

]
(22)

This can be done using the interpolation scheme for the
sampled excitation pressure fields :

p(ξ, η, ω) =
∑
i=1,4

Ni(ξ, η)pi(ω) (23)

where Ni(ξ, η) = 1/4 (1 + ξξi) (1 + ηηi) (with (ξi, ηi) = local
coordinates of node i).

Substitution of equation (23) into equation (22) leads to :

S p(x(ξ, η), y(ξ, η), ω) =
∑
i=1,4

∑
j=1,4

Ni(ξ, η)N j(ξ, η)S pi p j (ω)

(24)
Further use of equation (24) into equation (21) leads after
integration to the following result :

S e
<p2>

(ω) =
2

18

(
S p1 (ω) + S p2 (ω) + S p3 (ω) + S p4 (ω)

)
+

2
18

(
S p1 p2 (ω) + S p2 p3 (ω)

)
+

2
18

(
S p3 p4 (ω) + S p1 p4 (ω)

)
+

1
18

(
S p1 p3 (ω) + S p2 p4 (ω)

)
(25)

Examination of equation (25) indicates that the contribution
of the considered element to the mean quadratic pressure
spectrum depends not only on nodal pressure auto-power
spectra but also on the cross-spectra.

If the element dimensions he
x and he

y are significant with
respect to correlation lengths, S pi p j (ω) << S re f so that the
following value is obtained for the mean quadratic pressure
spectrum :

S e
<p2>

(ω) '
4
9

S re f (ω) (26)
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4 Treatment of distributed random
excitations

4.1 Introduction
The treatment of a diffuse field excitation in a finite element
context can be organized in different ways. If the diffuse
field is modeled as a weakly stationary, distributed random
process, the most conventional procedure relies on the
input/output relation formulated in terms of auto- and
cross-PSD quantities.In a modal context, this procedure
requires the evaluation of the so-called joint acceptance
functions which measures the exchange of energy between
the structural modes. An alternative consists in direct or
algebraic sampling procedures. A direct sampling procedure
relies on preliminary discretization of the diffuse field using
a finite set of plane waves while the algebraic procedure is
based on a simulation technique for multi-correlated fields.
These techniques are reviewed in the next sections.

4.2 Conventional procedure
The usual procedure for handling a distributed random
excitation in a finite element context relies on the following
input/output relation :

S U(ω) = H∗(ω)S F(ω)HT (ω) (27)

where S U is the PSD matrix of the nodal displacements, S F

is the PSD matrix of the nodal loads and H is the dynamic
flexibility matrix (inverse of the dynamic stiffness matrix).

In the particular context of a distributed random excitation,
the PSD matrix of the nodal loads can be expressed in
terms of the PSD matrix S P of the nodal pressures along
the loaded surface and the coupling matrix C (allowing for
the conversion of the nodal pressures into equivalent nodal
loads) :

S F(ω) = CS P(ω)CT (28)

Further details can be found in [6].

4.3 Algebraic sampling procedure
A diffuse field excitation (described as a weakly stationary
random process) can be sampled using the first step
(generation of Fourier samples) of a simulation procedure
dedicated to multi-correlated random processes ([7]).

This technique starts from a Cholesky decomposition of
the positive-definite hermitian matrix S P of order N which
contains the auto- and cross-PSD of nodal pressures along
the loaded surface :

S P(ω) = L(ω)LH(ω) (29)

where L(ω) is a lower triangular matrix and H denotes the
complex conjugate transpose.

The procedure requires to sample phase angles φk (for 1 ≤
k ≤ Ne) in the range [0, 2π] :

φk = U(0, 1) 2π k = 1, . . . ,Ne (30)

where U(0, 1) denotes a uniform random variable in the
range [0, 1]. A vector ς of random phase factors can be

generated using these phase angles. The kth entry of this
vector is given by :

ςk = eiφk (31)

and a particular Fourier realization ps of the distributed
random process simply results from the product :

Ps = L(ω)ς (32)

This particular realization supports the definition of a
distributed excitation.

The generation of multiple realizations of the random
processes relies on a single Cholesky decomposition of
matrix S P at each frequency. Each realization requires
the selection of a particular set of phase angles and one
matrix/vector product involving the vector ς of phase factors.

Each realization Ps of the random excitation leads to the
evaluation of numerical response U s (nodal displacement
vector) using the deterministic input/output relation :

Kdyn(ω)U s(ω) = CPs(ω) or U s(ω) = H(ω)CPs(ω) (33)

where H is the dynamic flexibility matrix (inverse of
the dynamic stiffness Kdyn) while C is a coupling matrix
allowing to convert sampled nodal pressures into equivalent
(consistent) nodal loads.

The statistical descriptors can be produced with the usual
average process. The PSD of the nodal displacement Ui is
obtained as :

S Ui (ω) = E
[
U s

i (ω)U s∗
i (ω)

]
(34)

where the mathematical expectation results from the
consideration of all sampled responses.

4.4 Direct sampling procedure
The direct sampling procedure for a diffuse field consists in
the generation of several sets of plane waves with random
phases selected according to the previous section. Each set
of plane waves generates a blocked pressure excitation along
the loaded boundary. Statistical operations are performed on
the individual responses related to these load cases in order
to evaluate S U .

5 Application to acoustic transmission
problems

5.1 Diffuse field excitation
The presented models are applied in this section to an
acoustic transmission problem involving an elastic plate
mounted in a rigid baffle and excited by a diffuse field.
The plate is rectangular (length = 0.8 m, width = 0.6 m,
thickness = 0.001 m) and is simply supported along its
edges. The constitutive material is steel with conventional
material properties (Young modulus E = 2.1 × 1011 Pa,
Poisson ratio ν = 0.3, loss factor η = 0.02 and mass density
ρs = 7850 kg/m3). The plate is excited by a diffuse field on
one side and is radiating in a semi-infinite medium on the
other side. The acoustic fluid on both sides is the air with
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Figure 5 – Comparison of transmission loss obtained with
different computational procedures (maximal normal

incidence angle = 60 degrees).

conventional material properties (sound speed c = 340 m/s
and mass density ρ f = 1.225 kg/m3). The vibro-acoustic
response is computed in the frequency band 10 − 1000 Hz
with a step of 1 Hz.

The finite element model involves 9882 nodes and 4800
shell elements. The modal description relies on the first
196 modes (eigenfrequencies below 1500 Hz). The various
computational procedures available in ACTRAN software
[8] are selected : treatment of the diffuse field as a weakly
stationary random process using the modified spatial
correlation function, generation and deterministic treatment
of multiple realizations of such random process and direct
sampling of the diffuse field as a sum of discrete plane waves
and deterministic treatment of related realizations.

TL (transmission loss) curves computed with these
procedures are compared in Figure 5 to the analytical
solution for a maximum incidence angle equal to 60 degrees.
All methods deliver a solution close to the reference
analytical solution (based on modes up to order 15 in x and
y directions).
As it can be observed, the introduction of maximum
incidence angle has a small influence on global response
indicators. It should be stressed however that all
computations have been done with the same power spectrum
for the incident pressure. The influence of the silent cone on
the incident pressure is therefore not considered in this study
which focuses only on the effect of the modified correlation
function.

5.2 Turbulent boundary layer excitation
An acoustic transmission problem is selected for studying
the effect of the mesh resolution on the treatment of a TBL
excitation. The considered problem involves a rectangular
plate (size along x1 = 0.47 m, size along x2 = 0.37 m,
thickness = 0.005 m). The constitutive material is steel
(Young modulus E = 2.0 1010 Pa, loss factor η = 0.02 ;
Poisson ratio ν = 0.3, density ρs = 7800 kg/m3). The plate is
simply supported along its edges. The plate is excited by a
TBL on one side and is radiating in a semi-infinite medium
on the other side. The following characteristics are selected

for the TBL excitation : S re f = 1 Pa2/Hz, α1 = 0.10 (−),
α2 = 0.70 (−) while the following flow velocity values are
considered : 10 and 100 m/s. The analysis is performed in the
frequency band [10, 1000] Hz using different computational
strategies : (1) physical approach with conventional solution
procedure, (2) modal approach with conventional solution
procedure and (3) modal approach with sampling procedure.

5.2.1 Selected FE meshes

Three meshes are selected for the FE analysis (and
for sampling the TBL excitation). Mesh M1 : 24 × 19
subdivisions (element size ' 0.020 m), Mesh M2 : 32 × 25
subdivisions (element size ' 0.015 m) and Mesh M3 :
47 × 37 subdivisions (element size = 0.010 m). Mesh
resolutions are indicated in Table 3 for the different flow
velocities.

uc λc λc/h (M1) λc/h (M2) λc/h (M3)
(m/s) (m) (-) (-) (-)

10 0.010 1/2 2/3 1
100 0.100 5 20/3 10

Table 3 – Resolution (λc/h where λc = uc/ f is the
convected wavelength and h the element size) of meshes

M1, M2 and M3 wrt. TBL excitation at 1000 Hz for
different flow velocities (uc = 10, 100 m/s).

5.2.2 Evaluation of radiated power

For illustration purposes, the radiated power computed
with a FE model based on mesh M1 is represented at
Figures 6 and 7 for two representative flow velocities.
Numerical results obtained with physical/conventional,
modal/conventional and modal/sampled (50 realizations)
approaches are compared to the exact solution.

Observation of these figures (and results related to other flow
velocities and FE meshes) show that considered meshes are
not able to capture the exact solution for low flow velocities
(10 m/s). This is due to a too coarse mesh for resolving the
TBL excitation.

5.2.3 Evaluation of incident power

The pseudo incident power related to a TBL excitation
results form the integration of the pseudo incident intensity
S 〈p2〉/(16ρc) along the loaded surface. The exact result
is therefore 0.26095 10−4 W. The approximate result is
obtained by integrating the local pressure auto-spectrum
(divided by the factor 16ρc) along individual elements.
The related results for the considered flow velocities are
compared to the exact result in Figure 8 (for mesh M1).

Further examination of these figures indicate that a sufficient
mesh resolution is requested for capturing correctly the
incident power, especially at low flow velocities and at high
frequencies.

In contrast, the evaluation of the incident power for a diffuse
field along the same meshes for the same frequency band is
leading to approximate values closed to the exact result.
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Figure 6 – Power radiated by a plate excited by a TBL (uc=

10 m/s, α1 = 0.10, α2 = 0.70) : comparison of exact and
approximate solutions physical/conventional,

modal/conventional and modal/sampled (50 realizations)
approaches with mesh M1.

Figure 7 – Power radiated by a plate excited by a TBL (uc =

100 m/s, α1 = 0.10, α2 = 0.70) : comparison of exact and
approximate solutions using physical/conventional,

modal/conventional and modal/sampled (50 realizations)
approaches with mesh M1.

5.2.4 Evaluation of transmission loss

The transmission loss can be evaluated using the exact value
of the incident power or the approximate value resulting
form the integration of the mean quadratic pressure indicator
along the loaded surface. This is illustrated (for mesh M1) in
Figure 9 (uc = 10 m/s).

Examination of this figure shows that the insufficient mesh
resolution for capturing correctly correlation effects within
the TBL doest not allow for an accurate evaluation of the
transmission loss. The discretized form of the incident power
(instead of the exact one) do not introduce a compensation
effect so the the related TL value can be worst.

6 Conclusion
Some particular aspects related to the handling of distributed
random excitations (diffuse field and turbulent boundary
layer) have been addressed. Elimination of grazing
incidences for a diffuse field has been performed in order
to extract a modified spatial correlation function. Mesh
resolution issues related to turbulent boundary layer
excitations have been highlighted.

Figure 8 – Comparison of exact and approximate
pseudo-incident powers related to a TBL excitation as

computed by integration along mesh M1 (uc = 5 − 200 m/s,
α1 = 0.10, α2 = 0.70).

Figure 9 – Comparison of TL indicators for TBL excitation
along mesh M1 (uc = 10 m/s, α1 = 0.10, α2 = 0.70).
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